Advertisement

Effects of Electrostimulation Therapie: Enzyme-Histological and Myometric Changes in the Denervated Musculature

  • E. Stennert
  • C. Böschen
  • A. Gunkel
  • H. H. Goebel
Conference paper

Abstract

Electrostimulation therapy is a widely accepted method applied to denervated skeletal muscles in order to prevent or retard muscular atrophy [1,4,13,24,25]. Following the proposal made by Duchenne in 1855, electrostimulation therapy has also been applied to mimic muscles in cases of facial palsy [6]. Animal experiments done on skeletal muscles have shown that an indispensable prerequisite for the success of electrostimulation therapy are isometric muscle contractions, which the skeletal muscles are able to perform due to bony insertions [1,7,11,13,16,24]. Since mimic muscles do not, or only partially insert in bone and therefore cannot perform isometric contractions, it was concluded that electrostimulation of the paralyzed mimic musculature would be of no therapeutic value [16]. However, this statement has never been verified clinically or experimentally. The aim of the present investigation was to study whether electrostimulation therapy can prevent or retard muscular atrophy.

Keywords

Creatine Kinase Fiber Diameter Facial Palsy Muscular Atrophy Creatine Kinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsson J, Thesleff S (1959) A study of supersensitivity in denervated mammalian skeletal muscle. J Physiol [Lond] 149: 178–193Google Scholar
  2. 2.
    Bardosi A, Goebel HH, Stennert E (1987) The ultrastructure of normal and denervated human facial muscles. Plast Reconstruct Surg 79: 171–176CrossRefGoogle Scholar
  3. 3.
    Brooke MH, Engel WK (1969) The histographic analysis of human muscle biopsies with regard to fiber types. Neurology (Minneap) 19:221–233, 469–477Google Scholar
  4. 4.
    Brown MD, Cotter M, Hudlicka ME, Smith G, Vroba A (1973) The effect of long term stimulation of fast muscles on their abi¬lity to withstand fatigue. J Physiol [Lond] 238: 47–48Google Scholar
  5. 5.
    Dubowitz V, Brooke MH (1973) Muscle biopsy: a modern ap¬proach. Saunders, LondonGoogle Scholar
  6. 6.
    Duchenne GD (1872) De l’electrisation localisée, 3rd edition. Baillère, Paris, pp 864–870Google Scholar
  7. 7.
    Eccles JC (1944) Investigations on muscle atrophies arising from disuse and tenotomy. J Physiol [Lond] 103: 253–266Google Scholar
  8. 8.
    Empfehlungen der Deutschen Gesellschaft fur Klinische Chemie (1970) Z Klin Chemie 8: 658–660Google Scholar
  9. 9.
    Empfehlungen der Deutschen Gesellschaft fur Klinische Chemie (1972) Z Klin Chemie 10: 182–192Google Scholar
  10. 10.
    Engel WK, Cunningham GG (1963) Rapid examination of muscle tissue. An improved trichrome method for fresh-frozen biopsy sections. Neurology (Minneap) 13: 919–923Google Scholar
  11. 11.
    Erbslöh F, Hager H (1972) Sekundäre Muskelveränderungen bei peripheren Nervenläsionen. Melsunger Med Mitt 46: 59–83Google Scholar
  12. 12.
    Farber E, Sternberg WH, Durilap CD (1959) Histochemieal lo¬calization of specific oxidative enzymes. I. Tetrazolium stains for diphosphopyridine nucleotide diaphorase and triphos- phopyridine nucleotide diaphorase. J Histochem Cytochem 4: 254–265Google Scholar
  13. 13.
    Fischer E, Ramsey VW (1945) The effect of daily electrical sti¬mulation of normal and denervated muscles upon their protein content and upon some of the physicochemieal properties of the protein. Am J Physiol 145: 583–586Google Scholar
  14. 14.
    Gerebtzoff MA (1953) Recherches histochemiques sur les acetylcholine et choline-esterase. Acta Anat 19: 366–379PubMedCrossRefGoogle Scholar
  15. 15.
    Gollnick PD, Parsons D, Oakley CR (1983) Differentiation of fiber types in skeletal muscle from the sequential inactivation of myofibrillar actomyosin ATPase during acid preincubation. Histochemistry 77: 543–555PubMedCrossRefGoogle Scholar
  16. 16.
    Hopf HC (1974) Konservative Therapie und Rehabilitation der Lokalerkrankungen peripherer Nerven. Akt Neurol 1: 38–45Google Scholar
  17. 17.
    Lomo T, Westgaard RH, Dahl HA (1974) Contractile properties of muscle: Control by pattern of muscle activity in the rat. Proc RSocB 187: 99–103Google Scholar
  18. 18.
    Lomo T, Westgard RH (1975) Further studies on the control of ACH sensitivity by activity in the rat. J Physiol 252: 603–626PubMedGoogle Scholar
  19. 19.
    Matoba H, Allen JR, Bayla WM, Oakley CR, Gollnick PD (1985) Comparison of fiber types in skeletal muscles from ten animal species based on sensitivity of the myofibrillar actomyosin ATPase to acid or copper. Histochemistry 82: 175–183PubMedCrossRefGoogle Scholar
  20. 20.
    Melichna JE, Gutmann E (1974) Stimulation and immobilisation effects on contractile and histochemical properties of denervated muscle. Pflügers Arch 352: 165–178PubMedCrossRefGoogle Scholar
  21. 21.
    Nachlas MM, Walker DG, Seligman AM (1958) Histochemical method for the demonstration of DPN-diaphorase. J Biophys Biochem Cytol 4 (29): 169Google Scholar
  22. 22.
    Padycula HA, Herman E (1955) The specificity of the histo-chemical method for adenosine triphosphatase. J Histochem Cytochem 3: 170–183CrossRefGoogle Scholar
  23. 23.
    Pearse AGE (1961) Histochemistry, theoretical and applied. 2nd edition. Churchill Livingstone, LondonGoogle Scholar
  24. 24.
    Pette D, Ramirez BU, Müller W, Simon R (1975) Influence of intermittent long-term stimulation on contractile, histochemical and metabolic properties of fiber populations in fast and slow rabbit muscles. Pflügers Arch 361: 1–7PubMedCrossRefGoogle Scholar
  25. 25.
    Pette D, Smith ME, Staudte HW, Vrbova G (1973) Effects of long-term electrical stimulation on some contractile and metabolic characteristic of fast rabbit muscles. Pflügers Arch 338: 257–272Google Scholar
  26. 26.
    Sachs L (1974) Angewandte Statistik. Springer, Berlin Heidel¬berg New York, SS 230–238Google Scholar
  27. 27.
    Schwarting S, Schröder M, Stennert E, Goebell HH (1982) Enzyme histochemical and histographic data on normal human facial muscles. ORL 44: 51–59PubMedCrossRefGoogle Scholar
  28. 28.
    Schwarting S, Schröder M, Stennert E, Goebell HH (1984) Morphology of denervated human facial muscles. ORL 46: 248–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • E. Stennert
    • 1
  • C. Böschen
    • 1
  • A. Gunkel
    • 1
  • H. H. Goebel
    • 1
  1. 1.Klinik und Poliklinik für Hals-, Nasen- und OhrenheilkundeUniversität KölnKölnGermany

Personalised recommendations