Quasi-Stationary Wave Evolution on a Falling Film

  • Hsueh-Chia Chang
  • Minquan Cheng
  • Evgeny Demekhin
  • Evgeny Kalaidin
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

We examine the quasi-stationary approximation of nonlinear two-dimensional wave evolution on a falling film with numerical experiments and analyses. It is found that, unless the noise spectrum contains an inordinate amount of nearly neutral ω/ω 0 > 0.9 and nearly static ω/ω 0 < 0.05 frequencies, the waves behave in a quasi-stationary manner at every location downstream from the feed. Secondary wave evolution can hence be modeled as successive and increasingly long near misses of weakly unstable stationary waves via their stable and unstable manifolds. Wave selection and the entire evolution downstream can then be accurately predicted with simple models.

Keywords

Falling film coherent structures solitary waves homoclinic and heteroclinic orbits subharmonic resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, H.-C., 1989 Onset of nonlinear waves on falling films. Phys. Fluids A1, 1314–1327.ADSGoogle Scholar
  2. 2.
    Chang, H.-C., Demekhin, E. A. & Kopelevich, D. I., 1993 Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech 250, 433–480.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Chang, H.-C., 1994. Wave evolution on a falling film. Annual Rev. of Fluid Mech. 26, 103–36.ADSCrossRefGoogle Scholar
  4. 4.
    Chang, H.-C., Cheng, M., Demekhin, E. A. & Kopelevich, D. I., 1994 Secondary and tertiary excitation of three-dimensional patterns on a falling film (preprint).Google Scholar
  5. 5.
    Demekhin, E. A. & Shkadov, V. Ya. 1985 Two-dimensional wave regimes of a thin liquid film. Izv. Akad. Nauk SSSR, Mekh. Zhidk. i Gaza 3, 63–67.Google Scholar
  6. 6.
    Lin, S. P. 1974 Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63, 417–429.ADSMATHCrossRefGoogle Scholar
  7. 7.
    Nepomnyashy, A. A. 1974 Stability of wave regimes in a film flowing down an inclined plane. Izv. AkadNauk SSSR, Mekh. Zhidk i Gaza 3, 28–34.Google Scholar
  8. 8.
    Pugh, J. D. & Saffman, P. G. 1988 Two-dimensional superharmonic stability of finite- amplitude waves in plane Poiseuille flow. J. Fluid Mech. 194, 295–307.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Stainthorp, F. P. & Allen, J. M. 1965 The development of ripples on the surface of liquid film flowing inside a vertical tube. Trans. Inst. Chem. Engrs 43, 85–91.Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1994

Authors and Affiliations

  • Hsueh-Chia Chang
    • 1
  • Minquan Cheng
    • 1
  • Evgeny Demekhin
    • 1
  • Evgeny Kalaidin
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations