Nonlinear Interactions Between Oblique Instability Waves on Nearly Parallel Shear Flows

  • M. E. Goldstein
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


Asymptotic methods are used to describe the nonlinear self interaction between pairs of oblique instability modes that eventually develops when initially linear, spatially growing instability waves evolve downstream in nominally two-dimensional, unbounded or semi bounded, laminar shear flows. The first nonlinear reaction takes place locally within a so-called “critical layer” with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves together with an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy a pair of integral differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.


Instability Wave Critical Layer Linear Growth Rate Free Shear Layer Oblique Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Benney and R. F. Bergeron, Jr., “A new class of nonlinear waves in parallel flows,” Stud. Appl. Math. 48, 181 (1969).MATHGoogle Scholar
  2. 2.
    A. D. D. Craik, “Nonlinear resonant instability in boundary layers,” J. Fluid Mech. 50, 393 (1971).ADSMATHCrossRefGoogle Scholar
  3. 3.
    M. E. Goldstein and S. W. Choi, “Nonlinear evolution of interacting oblique waves on two-dimensional shear layers,” J. Fluid Mech. 207, 97 (1989). Also Corrigendum, J. Fluid Mech. 216, 659.MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    M. E. Goldstein and P. A. Durbin, “Nonlinear critical layers eliminate the upper branch of spatially growing Tollmien-Schlichting waves,” Phys. Fluids 29, 2344 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    M. E. Goldstein, P. A. Durbin, and S. J. Leib, “Roll-up of vorticity in adverse- pressure- gradient boundary layers,” J. Fluid Mech. 183, 325 (1987).ADSMATHCrossRefGoogle Scholar
  6. 6.
    M. E. Goldstein and L. S. Hultgren, “Nonlinear spatial evolution of an externally excited instability wave in a free shear layer,” J. Fluid Mech. 197, 295 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    M. E. Goldstein and S. J. Leib, “Nonlinear evolution of oblique waves on compressible shear layers,” J. Fluid Mech. 207, 73 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    M. E. Goldstein and S. S. Lee, “Fully coupled resonant-triad interaction in an adverse- pressure-gradient boundary layer,” J. Fluid Mech. 245, 523 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd edn. Pergamon (1987).MATHGoogle Scholar
  10. 10.
    R. R. Mankbadi, X. Wu, and S. S. Lee, “A critical-layer analysis of the resonant triad in boundary-layer transition.” To be published in J. Fluid Mech (1993).Google Scholar
  11. 11.
    W. H. Reid, “The stability of parallel flows,” in Basic Developments in Fluid Dynamics, M. Holt, ed., Academic Press, 249 (1965).Google Scholar
  12. 12.
    O. S. Ryzhov, “The formation of ordered vortex structures from unstable oscillations in the boundary layers,” U.S.S.R. Comput. Maths. Maths. Phys. 30, 146 (1990).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    M. E. Goldstein, “Nonlinear interactions between oblique instability waves on nearly parallel shear flows.” To be published in Physics of Fluids A, 1994.Google Scholar
  14. 14.
    J. T. Stuart, “On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow,” J. Fluid Mech. 9, 353 (1960).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    J. Watson, “On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow,” J. Fluid Mech. 9, 371 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    X. Wu, S. S. Lee, and S. J. Cowley, “On the weakly nonlinear three- dimensional instability of shear layers to pairs of oblique waves: the Stokes layer as a paradigm,” J. Fluid Mech. 253, 681 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    X. Wu, “On critical-layer and diffusion-layer nonlinearity in the three-dimensional stage of boundary-layer transition.” To be published in Proc. Roy. Soc. A. (1993).Google Scholar
  18. 18.
    D. Wundrow, L. S. Hultgren, and M. E. Goldstein, “Interaction of oblique instability waves with a nonlinear plane wave.” Submitted to J. Fluid Mech. (1993).Google Scholar
  19. 19.
    F. I. Hickernell, “Time-dependent critical layers in shear flows on the beta- plane,” J. Fluid Mech. 142, 431 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    X. Wu, “The nonlinear evolution of high frequency resonant-triad waves in an oscillating Stokes layer at high Reynolds number,” J. Fluid Mech., 245, 553 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    C-L Chang and M. R. Malik, “Oblique mode breakdown in a supersonic boundary layer using nonlinear PSE,” in Instability, Transition, and Turbulence, M. Y. Hussaini, A. Kumar, and C. L. Street, eds., Springer-Verlag (1992).Google Scholar
  22. 22.
    A. Thumm, W. Wolz, and H. Fasel, “Numerical simulation of spatially growing three- dimensional disturbance waves in compressible boundary layers,” Proceedings of the Third IUTAM Symposium on Laminar-Turbulent Transition, Toulouse, France, September 11–15, 1989.Google Scholar
  23. 23.
    T. Herbert, “Boundary-layer transition-analysis and prediction revisited,” AIAA Paper 91–0737 (1991).Google Scholar
  24. 24.
    P. R. Spalart and K. S. Yang, “Numerical study of ribbon-induced transition in Blasius flow,” J. Fluid Mech. 178, 345, (1987).ADSCrossRefGoogle Scholar
  25. 25.
    G. S. Raetz, “A new theory of the cause of transition in fluid flows,” Northrop Corp, NOR-59–383 BLC-121 (1959).Google Scholar
  26. 26.
    P. Huerre, “The nonlinear stability of a free shear layer in the viscous critical layer regime,” Phil. Trans. R. Soc. Lond. A 293, 643 (1980).ADSMATHCrossRefGoogle Scholar
  27. 27.
    P. Huerre, “On the Landau constant in mixing layers,” Proc. R. Soc. Lond. A 409, 369 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    M. E. Goldstein and S. J. Leib, “Nonlinear roll-up of externally excited free shear layers,” J. Fluid Mech. 191, 481 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    S. J. Leib, “Nonlinear evolution of subsonic and supersonic disturbances on a compressible mixing layer,” J. Fluid Mech. 224, 551 (1991).ADSMATHCrossRefGoogle Scholar
  30. 30.
    L. S. Hultgren, “Nonlinear spatial equilibration of an externally excited instability wave in a free shear layer.,” J. Fluid Mech. 236, 497 (1992)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    D. J. Benney and S. A. Maslowe, “The evolution in space and time of nonlinear waves in parallel shear flows,” Stud. Appl. Math. 54, 181 (1975).MathSciNetADSMATHGoogle Scholar
  32. 32.
    M. E. Goldstein and S. S. Lee, “Oblique instability waves in nearly parallel shear flows,” in Nonlinear Waves and Weak Turbulence with Applications in Oceanography and Condensed Matter Physics, N. Fitzmaurice, D. Gurarie, F. McCaughan and W. A. Woyczynski, eds., Birkh user-Boston, 159 (1993).Google Scholar

Copyright information

© Springer-Verlag, Berlin Heidelberg 1994

Authors and Affiliations

  • M. E. Goldstein
    • 1
  1. 1.National Aeronautics and Space AdministrationLewis Research CenterClevelandUSA

Personalised recommendations