Use of the Anion Gap in Intensive Care and Emergency Medicine

  • J. A. Kruse
Conference paper
Part of the Yearbook of Intensive Care and Emergency Medicine 1994 book series (YEARBOOK, volume 1994)


The serum anion gap is a derived laboratory value that can be readily calculated at the bedside from routine serum electrolyte measurements. Its chief use is in the recognition and differential diagnosis of metabolic acidosis. It is particularly useful in identifying certain mixed acid-base disturbances, and as a means of quantifying the degree of underlying acidosis after exogenous alkali has been administered to patients with certain forms of metabolic acidosis. Not uncommonly, the anion gap provides the initial clue that prompts specific diagnostic studies that lead to a definitive diagnosis.


Metabolic Acidosis Diabetic Ketoacidosis Renal Tubular Acidosis Metabolic Alkalosis Serum Chloride Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Winter SD, Pearson JR, Gabow PA, Schultz AL, Lepoff RB (1990) The fall of the anion gap. Arch Intern Med 150: 311–313PubMedCrossRefGoogle Scholar
  2. 2.
    Kruse JA (1992) Methanol poisoning. Intensive Care Med 18: 391–397PubMedCrossRefGoogle Scholar
  3. 3.
    Kruse JA (1992) Ethylene glycol intoxication. J Intensive Care Med 7: 234–243Google Scholar
  4. 4.
    Kruse JA (1993) Methanol, ethylene glycol, and related intoxications. In: Carlson RW, Geheb MA (eds) Principles & Practice of Medical Intensive Care. W.B. Saunders, Philadelphia, pp 1714–1723Google Scholar
  5. 5.
    Madias NE, Ayus JC, Adrogué JH (1979) Increased anion gap in metabolic alkalosis. The role of plasma-protein equivalency. N Engl J Med 300: 1421–1423PubMedCrossRefGoogle Scholar
  6. 6.
    Oster JR, Gutierrez R, Schlessinger FB, Taylor A, Federman DG, Vaamonde CA (1990) Effect of hypercalcemia on the anion gap. Nephrol 55: 164–169Google Scholar
  7. 7.
    Silverstein FJ, Oster JR, Materson BJ, et al (1989) The effects of administration of lithium salts and magnesium sulfate on the serum anion gap. Am J Kidney Dis 13: 377–381PubMedGoogle Scholar
  8. 8.
    Kruse JA (1993) Acid-base interpretations. In: Prough DS, Traystman RJ (eds) Critical Care State of the Art, Volume 14. Society of Critical Care Medicine, Anaheim, California, pp 275–297Google Scholar
  9. 9.
    Frohlich J, Adam W, Golbey MJ, Bernstein M (1976) Decreased anion gap associated with monoclonal and pseudomonoclonal gammopathy. Can Med Assoc J 114: 231–232PubMedGoogle Scholar
  10. 10.
    O’Connor DT, Stone RA (1978) Hyperchloremia and negative anion gap associated with polymyxin B administration. Arch Intern Med 138: 478–480PubMedCrossRefGoogle Scholar
  11. 11.
    Rothenberg DM, Berns AS, Barkin R, Glantz RH (1990) Bromide intoxication secondary to pyridostigmine bromide therapy. JAMA 263: 1121–1122PubMedCrossRefGoogle Scholar
  12. 12.
    Fischman RA, Fairclough GF, Cheigh JS (1978) Iodide and negative anion gap. N Engl J Med 298: 1035–1036PubMedGoogle Scholar
  13. 13.
    Graber ML, Quigg RJ, Stempsey WE, Weis S (1983) Spurious hyperchloremia and decreased anion gap in hyperlipidemia. Ann Intern Med 98: 607–609PubMedGoogle Scholar
  14. 14.
    Goldstein RJ, Lichtenstein NS, Souder D (1980) The myth of the low anion gap. JAMA 243: 1737–1738PubMedCrossRefGoogle Scholar
  15. 15.
    Mehta K, Kruse JA, Carlson RW (1986) The relationship between anion gap and elevated lactate. Crit Care Med 14: 405 (Abst)Google Scholar
  16. 16.
    Iberti TJ, Leibowitz AB, Papadakos PJ, Fischer EP (1990) Low sensitivity of the anion gap as a screen to detect hyperlactatemia in critically ill patients. Crit Care Med 18: 275–277PubMedCrossRefGoogle Scholar
  17. 17.
    Geheb MA, Kruse JA, Haupt MT, Desai TK, Carlson RW (1992) Fluid and electrolyte abnormalities in critically ill patients: Fluid resuscitation, lactate metabolism, and calcium metabolism. In: Narins RG (ed) Maxwell and Kleeman’s Clinical Disorders of Fluid and Electrolyte Metabolism, 5th ed. McGraw-Hill, New York, pp 1463–1490Google Scholar
  18. 18.
    Kruse JA, Carlson RW (1987) Lactate metabolism. Crit Care Clin 5: 725–746Google Scholar
  19. 19.
    Adrogué HJ, Wilson H, Boyd AE III, Suki WN, Eknoyan G (1982) Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med 307: 1603–1610PubMedCrossRefGoogle Scholar
  20. 20.
    Gamblin GT, Ashburn RW, Kemp DG, Beuttel SC (1986) Diabetic ketoacidosis presenting with a normal anion gap. Am J Med 80: 758–760PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. A. Kruse

There are no affiliations available

Personalised recommendations