Skip to main content

Tracheal Gas Insufflation as an Adjunct to Conventional Ventilation

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1994

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 1994 ((YEARBOOK,volume 1994))

Abstract

Improved understandig of the potential for ventilator-induced lung damage has inspired recent therapeutic innovations whose value currently remains unproven. It is now known that the manifestations of acute lung injury (ALI) are not homogeneously distributed [1, 2]. Only a fraction of the injured lung is accessible to inspired gas; in severe cases, no more than one third of all alveoli remain patent. Because ventilated lung units may be normally elastic and fragile, the apparent “stiffness” of the lung in ALI may be better explained by fewer functional alveoli than by a generalized increase in elastic recoil [1]. The small functional compartment that remains must receive the entire tidal volume (VT) and may therefore be subjected to overdistension, local hyperventilation, and inhibition of surfactant [3]. Injurious shear stresses may result from rapid inflation to high transalveolar pressures, especially at the junctions of structures that are mobile (aerated alveoli) with those that are immobile (collapsed or consolidated alveoli, conducting airways). In diverse animal models, transalveolar cycling pressures approximating those that normally correspond to total lung capacity (≈ 30 cm H2O) can diffusely injure normal alveoli over 15–60 min-periods; even lower pressures may damage normal lung tissues when sustained for several days [3, 4]. Conversely, failure to maintain a certain minimum lung volume in the setting of pre-existing ALI or an excessive inflation pressure may also produce or accentuate lung damage [2–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gattinoni L, Pesenti A (1991) Computed tomography scanning in acute respiratory failure. In: Zapol WM, Lemaire F (eds) Adult Respiratory Distress Syndrome. Marcel Dekker; New York, pp 199–221

    Google Scholar 

  2. Marcy TW, Marini JJ (1991) Inverse ratio ventilation in ARDS: Rationale and implementation. Chest 100: 494–504

    Article  PubMed  CAS  Google Scholar 

  3. Dreyfuss D, Saumon G (1991) Lung overinflation: Physiologic and anatomic alterations leading to pulmonary edema. In: Zapol WM, Lemaire F (eds) Adult Respiratory Distress Syndrome. Marcel Dekker, New York, pp 433–449

    Google Scholar 

  4. Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21: 131–143

    Article  PubMed  CAS  Google Scholar 

  5. Marini JJ, Crooke PS, Truwit JD (1989) Determinants and limits of pressure-preset ventilation: A mathematical model of pressure control. J Appl Physiol 67: 1081–1092

    PubMed  CAS  Google Scholar 

  6. Burke WC, Crooke PS, Marcy TW, Adams AB, Marini JJ (1993) Comparison of mathematical and mechanical models of pressure-controlled ventilation. J Appl Physiol 74: 922–933

    PubMed  CAS  Google Scholar 

  7. Nahum A, Burke WC, Ravenscraft SA, et al (1992) Lung mechanics and gas exchange during pressure controlled ventilation in dogs: Augmentation of CO2 elimination by an intratracheal catheter. Am Rev Respir Dis 146: 965–973

    PubMed  CAS  Google Scholar 

  8. Hickling KG (1992) Low volume ventilation with permissive hypercapnia in the adult respiratory distress syndrome. Clin Intensive Care 3: 67–68

    PubMed  CAS  Google Scholar 

  9. Kacmarek RM, Hickling KG (1993) Permissive hypercapnia. Respir Care 38: 373–387

    Google Scholar 

  10. Slutsky AS, Watson J, Leith DE, Brown R (1985) Tracheal insufflation O2 ( TRIO) at low flow rates sustains life for several hours. Anesthesiology 63: 278–286

    Article  PubMed  CAS  Google Scholar 

  11. Nahum A, Ravenscraft SA, Nakos G, et al (1992) Tracheal gas insufflation during pressure controlled ventilation: Effect of catheter position, diameter, and flow rate. Am Rev Respir Dir 146: 1411–1418

    Google Scholar 

  12. Nahum A, Ravenscraft SA, Nakos G, Adams AB, Burke WC, Marini JJ (1993) Effect of catheter flow direction on CO2 removal during tracheal gas insufflation. J Appl Physiol 75: 1238–1246

    PubMed  CAS  Google Scholar 

  13. Long SE, Menon AS, Kato H, et al (1988) Constant oxygen insufflation ( COI) in a ventilatory failure model. Am Rev Respir Dis 138: 630–635

    PubMed  CAS  Google Scholar 

  14. Couser JI, Make BJ (1989) Transtracheal oxygen decreases inspired minute ventilation. Am Rev Respir Dis 139: 627–631

    PubMed  Google Scholar 

  15. Wesmiller SW, Hoffman LA, Sciurba FC, et al (1990) Exercise tolerance during nasal cannula and transtracheal oxygen delivery. Am Rev Respir Dis 141: 789–791

    Article  PubMed  CAS  Google Scholar 

  16. Bergofsky EN, Hurewitz AN (1989) Airway insufflation: Physiologic effects on acute and chronic gas exchange in humans. Am Rev Respir Dis 140: 885–890

    PubMed  CAS  Google Scholar 

  17. Hurewitz AN, Bergofsky EH, Vomero E (1991) Airway insufflation. Increasing flow rates progressively reduced dead space in respiratory failure. Am Rev Respir Dis 144: 1229–1233

    PubMed  CAS  Google Scholar 

  18. Benditt J, Pollock M, Roa J, Celli B (1993) Transtracheal delivery of gas decreases the oxygen cost of breathing. Am Rev Respir Dis 147: 1207–1210

    PubMed  CAS  Google Scholar 

  19. Meltzer SJ, Auer J (1909) Continuous respiration without respiratory movements. J Exp Med 11: 622–625

    Article  PubMed  CAS  Google Scholar 

  20. Burwen DR, Watson J, Brown R, et al (1986) Effect of cardiogenic oscillations on gas mixing during tracheal insufflation of O2. J Appl Physiol 60: 965–971

    Article  PubMed  CAS  Google Scholar 

  21. Garviely N, Eckmann D, Grotberg JB (1992) Gas exchange by intratracheal insufflation in a ventilatory failure dog model. J Clin Invest 90: 2376–2383

    Article  Google Scholar 

  22. Teller LE, Alexander CM, Frumin MJ, et al (1988) Pharyngeal insufflation of oxygen prevents arterial desaturation during apnea. Anesthesiology 69: 980–982

    Article  PubMed  CAS  Google Scholar 

  23. Kolobow T, Muller E, Mandava S, et al (1991) Intratracheal pulmonary ventilation (ITPV). A new technique. Am Rev Respir Dis 143: A602 (Abst)

    Google Scholar 

  24. Muller E, Kolobow T, Mandava S, et al (1991) On how to ventilate lungs as small as 12% of normal. Intratracheal pulmonary ventilation (ITPV). A new mode of pulmonary ventilation. Am Rev Respir Dis 143: A693 (Abst)

    Google Scholar 

  25. Sznajder JI, Becker CJ, Crawford GP, et al (1989) Combination of constant-flow and continuous positive-pressure ventilation in canine pulmonary edema. J Appl Physiol 67: 817–823

    PubMed  CAS  Google Scholar 

  26. Jonson B, Similowski T, Levy P, et al (1990) Expiratory flushing of airways: A method to reduce dead space ventilation. Eur Respir J 3: 1202–1207

    PubMed  CAS  Google Scholar 

  27. Gilbert J, Larsson A, Smith B, et al (1991) Intermittent-flow expiratory ventilation (IFEV): Delivery technique and principles of action — a preliminary communication. Biomed Instrument Technol 25: 451–456

    CAS  Google Scholar 

  28. Huafeng W, Shi-Ao J, Zhicheng M, et al (1992) Experimental study of high-frequency two-way jet ventilation. Crit Care Med 20: 420–423

    Article  Google Scholar 

  29. Stresemann E, Votteri BA, Sattler FP (1969) Washout of anatomical dead space for alveolar hypoventilation. Respiration 26: 425–434

    Article  Google Scholar 

  30. Brochard L, Mion G, Isabey D, et al (1991) Constant-flow insufflation prevents arterial oxygen desaturation during endotracheal suctioning. Am Rev Respir Dis 144: 395–400

    Article  PubMed  CAS  Google Scholar 

  31. Burke WC, Nahum A, Ravenscraft SA, et al (1993) Modes of tracheal gas insufflation: Comparison of continuous and phase specific gas injection in normal dogs. Am Rev Respir Dis 148: 562–568

    Article  PubMed  CAS  Google Scholar 

  32. Larsson A (1992) Elimination of apparatus dead space — a simple method for improving CO2 removal without increasing airway pressure. Acta Anesthesiol Scand 36: 796–799

    Article  CAS  Google Scholar 

  33. Ravenscraft SA, Nahum A, Burke WC, et al (1992) Tracheal gas insufflation (TGI): Catheter effectiveness is determined by expiratory flush volume. Am Rev Respir Dis 147: A892 (Abst)

    Google Scholar 

  34. Ravenscraft SA, Burke WC, Nahum A, et al (1993) Tracheal gas insufflation augments CO2 clearance during mechanical ventilation. Am Rev Respir Dis 148: 345–351

    PubMed  CAS  Google Scholar 

  35. Nahum A, Sznajder JI, Solway J, et al (1988) Pressure, flow, and density relationships in airway models during constant-flow ventilation. J Appl Physiol 64: 2066–2072

    PubMed  CAS  Google Scholar 

  36. Brampton W, Young JD (1993) Lung volume, pressure, flow, and density relationships during constant-flow ventilation in dogs. J Appl Physiol 74: 197–202

    PubMed  CAS  Google Scholar 

  37. Shapiro R, Nahum A, Ravenscraft SA, Adams AB, Marini JJ (1994) Efficacy of expiratory tracheal gas insufflation in a canine model of lung injury. Am Rev Respir Dis (in press)

    Google Scholar 

  38. Nahum A, Chandra A, Niknam J, Ravenscraft SA, Adams AB, Marini JJ (1994) Effect of tracheal gas insufflation on gas exchange in canine oleic acid-induced lung injury. Crit Care Med (in press)

    Google Scholar 

  39. Sznajder JI, Nahum A, Crawford G, et al (1989) Alveolar pressure inhomogeneity and gas exchange during constant-flow ventilation in dogs. J Appl Physiol 67: 1489–1494

    PubMed  CAS  Google Scholar 

  40. Christopher KL, Spofford BT, Petrun MD, et al (1987) A program for transtracheal oxygen delivery. Assessment of safety and efficacy. Ann Intern Med 107: 802–808

    PubMed  CAS  Google Scholar 

  41. Burton GG, Wagshul FA, Henderson D, et al (1991) Fatal airway obstruction caused by a mucous ball from a transtracheal catheter. Chest 99: 1520–1521

    Article  PubMed  CAS  Google Scholar 

  42. Fletcher EC, Nickeson D, Costarangos-Galarza C (1988) Endotracheal mass resulting from a transtracheal catheter. Chest 93: 438–439

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nahum, A., Marini, J.J. (1994). Tracheal Gas Insufflation as an Adjunct to Conventional Ventilation. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1994. Yearbook of Intensive Care and Emergency Medicine 1994, vol 1994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85068-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85068-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57613-6

  • Online ISBN: 978-3-642-85068-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics