Skip to main content

Perioperative Metabolic and Hemodynamic Changes in Adults and Children

  • Conference paper
  • 102 Accesses

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 1994 ((YEARBOOK,volume 1994))

Abstract

Traditional postoperative monitoring has focused on physiologic and biochemical deficiencies that are identified and corrected. This approach assumes that normal values for age are appropriate therapeutic goals, but does not take into account the increased or altered metabolic and hemodynamic needs of critically ill postoperative patients. Dehydration, hypoxemia, hypotension, hypovolemia, and oliguria are usually corrected, sometimes overcorrected, most frequently on one-at-a-time search for deficiencies. Unfortunately, in adults [1, 2] and children [3, 4] the most commonly measured variables like blood pressure and heart rate are the poorest, least relevant predictors of outcome [1]. Cardiac index, pulmonary vascular resistance, oxygen delivery (DO2) and consumption (VंO2) have a better prognostic significance, but in general no single variable is satisfactory, confirming that postoperative monitoring requires a multi-factorial approach [1, 3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shoemaker WC, Bland RD, Appel PL (1985) Therapy of critically ill postoperative patients based on outcome prediction and prospective clinical trials. Surg Clin N Am 65: 811–833

    PubMed  CAS  Google Scholar 

  2. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1786

    Article  PubMed  CAS  Google Scholar 

  3. Kohanna FH, Cunningham JN, Catinella FP, Adams PX, Nathan IM, Pasternack BS (1981) Cardiac output determination after cardiac operation. Lack of correlation between direct measurements and indirect estimates. J Thorac Cardiovasc Surg 82: 904–908

    PubMed  CAS  Google Scholar 

  4. Kirklin JK, Blackstone EH, Kirklin JW, McKay R, Pacifico AD, Bargeron LM (1981) Intracardiac surgery in infants under age 3 months: Predictors of postoperative in-hospital cardiac death. Am J Cardiol 48: 507–512

    Article  PubMed  CAS  Google Scholar 

  5. Clowes GHA, Del Gurcio LR, Barwinsky J (1960) The cardiac output in response to surgical trauma. Arch Surg 81: 212–222

    Article  PubMed  Google Scholar 

  6. Waxman K, Nolan LS, Shoemaker WC (1982) Sequential perioperative lactate determination. Physiological and clinical implications. Crit Care Med 10: 96–99

    Article  PubMed  CAS  Google Scholar 

  7. Cahalan MK, Weiskopf RB, Eger II EI, et al (1991) Hemodynamic effects of desflurane/ nitrous oxide anesthesia in volunteers. Anesth Analg 73: 157–164

    Article  PubMed  CAS  Google Scholar 

  8. Theye RA (1970) Thiopental and oxygen consumption. Anesth Analg 49: 69–72

    PubMed  CAS  Google Scholar 

  9. Nisbet HIA, Dobbinson TL,Thomas TA, Pelton DA (1973) Oxygen uptake in ventilated children during methoxyflurane anaesthesia. Can Anesth Soc J 20: 334–346

    Article  CAS  Google Scholar 

  10. Westenskow DR, Jordan WS (1978) Changes in oxygen consumption induced by fentanyl and thiopentone during balanced anaesthesia. Can Anaesth Soc J 25: 18–21

    Article  PubMed  CAS  Google Scholar 

  11. Greene NM (1961) Lactate, pyruvate, and excess lactate production in anesthetized man. Anesthesiology 22: 404–412

    Article  PubMed  CAS  Google Scholar 

  12. Shibutani K, Komatsu T, Kubal K, Sanchala V, Kumar V, Bizzarri DV (1983) Critical level of oxygen delivery in anesthetized man. Crit Care Med 11: 640–643

    Article  PubMed  CAS  Google Scholar 

  13. Komatsu T, Shibutani K, Okamoto K, et al (1987) Critical level of oxygen delivery after cardiopulmonary bypass. Crit Care Med 15: 194–197

    Article  PubMed  CAS  Google Scholar 

  14. Vermeij CG, Feenstra BWA, Bruining HA (1990) Oxygen delivery and oxygen uptake in postoperative and septic patients. Chest 98: 415–420

    Article  PubMed  CAS  Google Scholar 

  15. Ariza M, Gothard JWW, Macnaughton P, Hooper J, Morgan CJ, Evans TW (1991) Blood lactate and mixed venous-arterial PCO2 gradient as indices of poor peripheral perfusion following cardiopulmonary bypass surgery. Intensive Care Med 17: 320–324

    Article  PubMed  CAS  Google Scholar 

  16. Watters JM, March RJ, Desai D, Monteith K, Hurtig JB (1993) Epidural anaesthesia and analgesia do not affect energy expenditure after major abdominal surgery. Can J Anaesth 40: 314–319

    Article  PubMed  CAS  Google Scholar 

  17. Tulla H, Takala J, Alhava E, Huttunen H, Kari A (1991) Hypermetabolism after coronary artery bypass. J Thorac Cardiovasc Surg 101: 598–600

    PubMed  CAS  Google Scholar 

  18. Lerman J (1991) Pharmacokinetics and pharmacodynamics of inhalational anesthestics in infants and children. Anesth Clin N Am 9: 763–779

    Google Scholar 

  19. Rao CC, Boyer MS, Krishna G, Paradise RR (1986) Increased sensitivity of the isometric contraction of the neonatal isolated rat atria to halothane, isoflurane, and enflurane. Anesthesiology 64: 13–18

    Article  PubMed  CAS  Google Scholar 

  20. Angerpointner THA, Stallinger H, Linderkamp O, Riegel KP (1982) The effect of moderate hypoxemia on cardiac performance in the newborn during anaesthesia and surgery — Experimental studies in newborn and two-week-old piglets. Z Kinderchir 36: 12–19

    PubMed  CAS  Google Scholar 

  21. Coles JG, Watanabe T, Wilson GJ, et al (1987) Age-related differences in the response to myocardial ischemic stress. J Thorac Cardiovasc Surg 94: 526–534

    PubMed  CAS  Google Scholar 

  22. Lerman J, Robinson S, Willis MM, Gregory GA (1983) Anesthestic requirements for halothane in young children 0–1 month and 1–6 months of age. Anesthesiology 59: 421–424

    Article  PubMed  CAS  Google Scholar 

  23. Gregory GA (1982) The baroresponse of preterm infants during halothane anaesthesia. Can Anaesth Soc J 29: 105–107

    Article  PubMed  CAS  Google Scholar 

  24. Murat I, Lerron JC, Berg A, Saint-Maurice C (1988) Effects of fentanyl on baroreceptor reflex control of heart rate in newborn infants. Anesthesiology 68: 717–722

    Article  PubMed  CAS  Google Scholar 

  25. Murray DJ, Forbes RB, Mahoney LT (1992) Comparative hemodynamic depression of halothane versus isoflurane in neonates and infants: An echocardiographic study. Anesth Analg 74: 329–337

    PubMed  CAS  Google Scholar 

  26. Hershenson MB, O’Rourke PP, Schena JA, Crone RK (1987) Effect of halothane on critical levels of oxygen transport in the anesthetized newborn lamb. Anesthesiology 67: 174–179

    Google Scholar 

  27. Steward D (1982) Preterm infants are more prone to complications following minor surgery than are term infants. Anesthesiology 56: 304–306

    Article  PubMed  CAS  Google Scholar 

  28. Gerber AC, Baitella LC, Dangel PH (1993) Spinal anaesthesia in former preterm infants. Paediatr Anaesth 3: 153–156

    Article  Google Scholar 

  29. Aubier M, Viires N, Syllie G, Mozes R, Roussos C (1982) Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis 126: 648–652

    PubMed  CAS  Google Scholar 

  30. Gregory GA, Edmunds LH, Kitterman JA, Phibbs RH, Tooley WH (1975) Continuous positive airway pressure and pulmonary and circulatory function after cardiac surgery in infants less than three months of age. Anesthesiology 43: 426–431

    Article  PubMed  CAS  Google Scholar 

  31. Burrows FA, Williams WG, Teoh KH, et al (1988) Myocardial performance after repair of congenital cardiac defects in infants and children. J Thorac Cardiovasc Surg 96: 548–556

    PubMed  CAS  Google Scholar 

  32. Anand KJS, Sippel WG, Aynsley-Green A (1987) Randomized trial of fentanyl anaesthesia in preterm babies undergoing surgery: Effects on the stress response. Lancet 1: 243–247

    Article  PubMed  CAS  Google Scholar 

  33. Anand KJS, Hickey P (1992) Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N Engl J Med 326: 1–9

    Article  PubMed  CAS  Google Scholar 

  34. Groner JI, Brown MF, Stallings VA, Ziegler MM, O’Neill J (1989) Resting energy expenditure in children following major operative procedures. J Pediatr Surg 24: 825–828

    Article  PubMed  CAS  Google Scholar 

  35. Wolf AR, Eyres RL, Laussen PC, et al (1993) Effect of extradural analgesia on stress responses to abdominal surgery in infants. Br J Anaesth 70: 654–660

    Article  PubMed  CAS  Google Scholar 

  36. Shanbhogue R, Jackson M, Lloyd DA (1991) Operation does not increase resting energy expenditure in the neonate. J Pediatr Surg 26: 578–580

    Article  PubMed  CAS  Google Scholar 

  37. Chwals WJ, Lally KP, Wooley MM, Mahour GH (1988) Measured energy expenditure in critically ill infants and young children. J Surg Res 44: 467–472

    Article  PubMed  CAS  Google Scholar 

  38. Billeaud C, Piedboeuf B, Chessex P (1993) Respiratory gas exchange in response to fat-free parenteral nutrition: A comparison after thoracic or abdominal surgery in newborn infants. J Pediatr Surg 28: 11–13

    Article  PubMed  CAS  Google Scholar 

  39. Buheitel G, Scharf J, Dorr HG, Ramsauer T, Schuderer E, Singer H (1993) Follow-up of hormonal and metabolic parameters after heart operations in childhood. Monatsschr Kinderheilkd 141: 427–433

    PubMed  CAS  Google Scholar 

  40. Allen DB, Dietrich KA, Zimmermann JJ (1989) Thyroid hormone metabolism and level of illness severity in pediatric cardiac surgery patients. J Pediatr 114: 59–62

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanconi, S., Gerber, A. (1994). Perioperative Metabolic and Hemodynamic Changes in Adults and Children. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1994. Yearbook of Intensive Care and Emergency Medicine 1994, vol 1994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85068-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85068-4_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57613-6

  • Online ISBN: 978-3-642-85068-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics