Inotropic Agents

  • R. N. Sladen
Part of the Yearbook of Intensive Care and Emergency Medicine 1994 book series (YEARBOOK, volume 1994)

Abstract

Inotropic agents may be classified according to their primary mechanism of action (Table 1), i. e. whether their action is dependent on or independent of cyclic adenosine monophosphate (cAMP) [1]. The most important inotropic agents used clinically are cAMP-dependent: β-receptor agonists (e. g. epinephrine) and phosphodiesterase inhibitors (e. g. amrinone), which will be discussed in this chapter. Forskolin is a direct activator of adenylyl cyclase and therefore independent of the β-receptor. Dibutyryl cAMP is a cAMP analogue which directly stimulates calcium ingress. Both these agents are investigational and useful in defining mechanisms of inotropic action. Digoxin, which inhibits the cellular sodium-potassium pump, and calcium, the “third messenger” in all muscle contraction, act independently of cAMP. However, their usefulness as IV inotropic agents is limited by their toxic effects. Alpha-receptor agonists (e. g. norepinephrine) may have important inotropic activity in congestive cardiac failure where there has been down-regulation of the β-receptors.

Keywords

Adenosine Catecholamine Cardiol Fentanyl Triphosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Royster RL (1990) Intraoperative administration of inotropes in cardiac surgical patients. J Cardiothoracic Anesth 4 (Suppl 5): 17–28CrossRefGoogle Scholar
  2. 2.
    Levy JH (1993) Support of the perioperative failing heart with preexisting ventricular dysfunction: Currently available options. J Cardiothorac Vasc Anesth 7 (Suppl 2): 46–51PubMedCrossRefGoogle Scholar
  3. 3.
    Bristow MR, Ginsburg R, Minobe W (1982) Decreased catecholamine sensitivity and ßadrenergic-receptor density in failing human hearts. N Engl J Med 307: 205–211PubMedCrossRefGoogle Scholar
  4. 4.
    Brodde OE, Schuler S, Kretsch R, et al (1986) Regional distribution of ß-adrenoceptors in the human heart: Coexistence of function of ßt-and 132-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol 8: 1235–1242PubMedCrossRefGoogle Scholar
  5. 5.
    Schwinn DA, Leone BJ, Spahn DR, et al (1991) Desensitization of myocardial 3-adrenergic receptors during cardiopulmonary bypass. Evidence for early uncoupling and late down-regulation. Circulation 84: 2559–2567PubMedGoogle Scholar
  6. 6.
    Levy JH, Ramsay J, Bailey JM (1990) Pharmacokinetics and pharmacodynamics of phosphodiesterase-III inhibitors. J Cardiothoracic Anesth 4 (Suppl 5): 7–11CrossRefGoogle Scholar
  7. 7.
    Bruckner R, Meyer W, Mugge A, Schmitz W, Scholz H (1984) Alpha-adrenoreceptormediated positive inotropic effect of norepinephrine in isolated human ventricular myocardium. Eur J Pharmacol 99: 345–347PubMedCrossRefGoogle Scholar
  8. 8.
    Boldt J, Kling D, Zickmann B, Dapper F, Hempelmann G (1990) Haemodynamic effects of the phosphodiesterase inhibitor enoximone in comparison with dobutamine in esmololtreated cardiac surgery patients. Br J Anaesth 64: 611–616PubMedCrossRefGoogle Scholar
  9. 9.
    Royster RL, Butterworth JF, Prielipp RC, et al (1992) A randomized, blinded, placebo-controlled evaluation of calcium chloride and epinephrine for inotropic support after emergence from cardiopulmonary bypass. Anaesth Analg 74: 3–13CrossRefGoogle Scholar
  10. 10.
    Midei MG, Sugiura S, Maughan WL, Sagawa K, Weisfeldt ML, Guerci AD (1990) Preservation of ventricular function by treatment of ventricular fibrillation with phenylephrine. J Am Coll Cardiol 16: 489–494PubMedCrossRefGoogle Scholar
  11. 11.
    Murphy MB, Elliott WJ (1990) Dopamine and dopamine receptor agonists in cardiovascular therapy. Crit Care Med 18: S14 - S18PubMedCrossRefGoogle Scholar
  12. 12.
    Murphy MB (1990) The therapeutic role of drugs acting on cardiovascular dopamine receptors. J Cardiothoracic Anesth 4: 23–26CrossRefGoogle Scholar
  13. 13.
    Goldberg LI (1975) The dopamine vascular receptor: New areas for biochemical pharmacologists. Biochem Pharmacol 24: 651–653PubMedCrossRefGoogle Scholar
  14. 14.
    Goldberg L, Volkman P, Kohli J (1978) A comparison of the vascular dopamine receptor with other dopamine receptors. Annu Rev Pharmacol Toxicol 18: 57–79PubMedCrossRefGoogle Scholar
  15. 15.
    Rosenblum R, Tai A, Lawson D (1972) Dopamine in man: Cardio-renal hemodynamics in normotensive patients with heart disease. J Pharm Exp Therap 183: 256–263Google Scholar
  16. 16.
    Schwartz LB, Bissell MG, Murphy M, Gewertz BL (1988) Renal effects of dopamine in vascular surgical patients. J Vasc Surg 8: 367–374PubMedGoogle Scholar
  17. 17.
    Carey RM, Siragy HM, Ragsdale NV, et al (1990) Dopamine-1 and dopamine-2 mechanisms in the control of renal function. Am J Hypertens 3: 59S - 63SPubMedGoogle Scholar
  18. 18.
    Schaer GL, Fink MP, Parrillo JE (1985) Norepinephrine alone versus norepinephrine plus low-dose dopamine: Enhanced renal blood flow with combination pressor therapy. Crit Care Med 13: 492–496PubMedCrossRefGoogle Scholar
  19. 19.
    Majerus TC, Dasta JF, Bauman JL, Danziger LH, Ruffolo RR (1989) Dobutamine: Ten years later. Pharmacotherapy 9: 245–259PubMedGoogle Scholar
  20. 20.
    Fowler MB, Alderman EL, Oesterle SN, et al (1984) Dobutamine and dopamine after cardiac surgery: Greater augmentation of myocardial blood flow with dobutamine. Circulation 70: 1103–1111Google Scholar
  21. 21.
    Fitton A, Benfield P (1990) Dopexamine hydrochloride. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in acute cardiac insufficiency. Drugs 39: 308–330PubMedCrossRefGoogle Scholar
  22. 22.
    Hakim M, Foulds R, Latimer RD, English TA (1988) Dopexamine hydrochloride, a beta-2 adrenergic and dopaminergic agonist: Haemodynamic effects following cardiac surgery. Europ Heart J 9: 853–858Google Scholar
  23. 23.
    Smith GW, O’Connor SE (1988) A symposium: Focus on heart failure — Current experiences in basic research and clinical studies on dopexamine hydrochloride (Dopacard®): An introduction to the pharmacologic properties of Dopacard (dopexamine hydrochloride). Am J Cardiol 62: 9C - 17CPubMedCrossRefGoogle Scholar
  24. 24.
    Baumann G, Felix SB, Filcek S (1990) Congestive heart failure: Usefulness of dopexamine hydrochloride versus dobutamine in chronic congestive heart failure and effects on hemodynamics and urine output. Am J Cardiol 65: 748–754PubMedCrossRefGoogle Scholar
  25. 25.
    Ghosh S, Gray B, Oduro A, Latimer R (1991) Dopexamine hydrochloride: Pharmacology and use in low cardiac output states. J Cardiothorac Vasc Anesth 5: 382–389PubMedCrossRefGoogle Scholar
  26. 26.
    Packer M, Carver JR, Rodeheffer RJ, et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 325: 1468–1475PubMedCrossRefGoogle Scholar
  27. 27.
    Bailey JM, Levy JH, Rogers HG, Szlam F, Hug CC (1991) Pharmacokinetics of amrinone during cardiac surgery. Anesthesiology 75: 961–968PubMedCrossRefGoogle Scholar
  28. 28.
    Feneck RO and the European Milrinone Multicentre Trial Group (1992) Intravenous milrinone following cardiac surgery I. Effects of bolus infusion followed by variable dose maintenance infusion. J Cardiothorac Vasc Anesth 6: 554–562PubMedCrossRefGoogle Scholar
  29. 29.
    Boldt J, Moosdorf R, Hempelmann G (1990) Enoximone treatment of impaired myocardial function during cardiac surgery: Combined effects with epinephrine. J Cardiothoracic Anesth 4: 462–468PubMedCrossRefGoogle Scholar
  30. 30.
    Axelrod RJ, De Marco T, Dae M, Botvinick EH, Chaterjee K (1987) Hemodynamic and clinical evaluation of piroximone, a new inotrope-vasodilator agent, in severe congestive heart failure. J Am Coll Cardiol 9: 1124–1130PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. N. Sladen

There are no affiliations available

Personalised recommendations