Crystal Field Effects and Electronic Excitations in Single-Crystal C60

  • P. H. M. van Loosdrecht
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 117)


The symmetry lowering by the crystal field in solid C60 leads to Davydov splittings and activation of molecular modes, as observed by Raman spectroscopy on single crystal C60- The influence of 514 nm irradiance on the Raman spectrum of C60 is discussed in terms of the long living excitonic triplet state of C60- At high irradiance the measured spectrum shows the vibrational properties of the excited state, rather than those of the ground state. The model used also explains the influence of the presence of oxygen on the Raman spectrum.


Electron Paramagnetic Resonance Raman Spectrum High Irradiance Molecular Mode Original Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.A. Verheijen, G. Meijer, H. Meekes, E. Raas, and P. Bennema, Chem. Phys. Lett. 191, 339 (1992).ADSCrossRefGoogle Scholar
  2. [2]
    J. de Boer, University of Groningen, unpublished.Google Scholar
  3. [3]
    G. van Tendeloo, S. Amelinckx, M.A. Verheijen, P.H.M. van Loosdrecht, and G. Meijer, Phys. Rev. Lett. 96, 7424 (1992).Google Scholar
  4. [4]
    R.M. Flemming, T. Siegrist, P.M. March, B. Hessen, A.R. Kortan, D.W. Murphy, R.C. Haddon, R. Tycko, G. Dabbagh, A.M. Mujsce, M.L. Kaplan, and S.M. Zahurak, Mat. Res. Soc. Proc. 206, 691 (1991).CrossRefGoogle Scholar
  5. [5]
    P A. Heiney, J.E. Fisher, A.R. McGhie, W.J. Romanow, A.M. Denenstein, J.P. McCauly Jr., A.B. Smith III, and D.E. Cox, Phys. Rev. Lett. 66, 2911 (1991).ADSCrossRefGoogle Scholar
  6. [6]
    E. J. J. Groenen, O.G. Poluektov, M. Matsushita, J. Schmidt, J.H. van der Waals, and G. Meijer, Chem. Phys. Lett. 197, 314 (1992).ADSCrossRefGoogle Scholar
  7. [7]
    J.E. Fisher et al., preprint.Google Scholar
  8. [8]
    X.D. Shi, A.R. Kortan, J.M. Williams, A.M. Kini, B.M. Sava, and P.M. Chaikin, Phys. Rev. Lett. 68 (1992), 827.ADSCrossRefGoogle Scholar
  9. [9]
    P.H.M. van Loosdrecht, P.J.M. van Bentum, and G. Meijer, Phys. Rev. Lett. 68, 1176 (1992).ADSCrossRefGoogle Scholar
  10. [10]
    P.H.M. van Loosdrecht, P.J.M. van Bentum, M.A. Verheijen, and G. Meijer, Chem. Phys. Lett. 198, 587 (1992).ADSCrossRefGoogle Scholar
  11. [11]
    L.R. Narasimhan, D.N. Stoneback, A.F. Hebard, R.C. Haddon, and C.K.N. Patel, Phys. Rev. B 46, 2591 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    P.H.M. van Loosdrecht, P.J.M. van Bentum, and G. Meijer, Chem. Phys. Lett. 205, 191 (1993).ADSCrossRefGoogle Scholar
  13. [13]
    S.J. Duclos, R.C. Haddon, S.H. Glarum, A.F. Hebard, and K.B. Lyons, Sol. St. Comm. 80, 481 (1991).ADSCrossRefGoogle Scholar
  14. [14]
    P.C. Eklund et al., this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. H. M. van Loosdrecht
    • 1
  1. 1.Research Institute for MaterialsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations