Orientational Order in A3C60: Effects on Valence Bands and Infrared Optical Spectra

  • A. I Liechtenstein
  • I. I Mazin
  • O. Gunnarsson
  • O. K. Andersen
  • S. E. Burkov
  • V. P. Antropov
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 117)


By analysis of the electronic contribution to the binding in A3C60, we show that the problem of orientational ordering can be mapped onto the fcc nearest-neighbor antiferromagnetic Ising model with J of the order of 100K. The ground state crystal structure should be therefore anti-ferromagnetically ordered in two dimensions and disordered in the third. This is not inconsistent with present X-ray powder data. We find that the low-temperature conduction-band structure closely resembles that of the simplest antiferromagnetically ordered (so-called bi-directional) crystal. Calculated optical conductivity can be fitted by a Drude-like contribution and an “interband” Lorenzian peak at 400-500 cm−1.


Optical Conductivity Orientational Order Drude Peak Orientational Energy Effective Plasma Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600 (1991).ADSCrossRefGoogle Scholar
  2. [2]
    P.W. Stephens, L. Mihaly, P.L. Lee, R.L. Whetten, S.-M. Huang, R. Kaner, F. Diederich, and K. Holczer, Nature, 351, 632 (1991); P.W. Stephens, L. Mihaly, J.B. Wiley, S.-M. Huang, R. Kaner, F. Diederich, R.L. Whetten, and K. Holczer, Phys. Rev. B., 45, 543 (1992).ADSCrossRefGoogle Scholar
  3. [3]
    M.P. Gelfand and J.P. Lu, Phys. Rev. Lett., 68, 1050 (1992).ADSCrossRefGoogle Scholar
  4. [4]
    R. Tycko, G. Dabbagh, M.J. Rosseinsky, D.W. Murphy, A.P. Ramirez, and R.M. Flerning, Phys. Rev. Lett., 68, 1912 (1992); J.C. Tully and the above, Science 253, 884 (1991).ADSCrossRefGoogle Scholar
  5. [5]
    O. Gunnarsson, S. Satpathy, O. Jepsen, and O.K. Andersen, Phys. Rev. Lett., 67, 3002 (1991).ADSCrossRefGoogle Scholar
  6. [6]
    S. Satpathy, V. P. Antropov, O. K. Andersen, O. Jepsen, O. Gunnarsson, and A. I. Liechtenstein, Phys. Rev. B46, 1773 (1992).ADSGoogle Scholar
  7. [7]
    The TB rad-AO results of the present paper were obtained with a=14.24 Åand bond lengths 1.391Å and 1.455Å.. The results were corrected for the structural difference in the repulsive interaction, which is assumed to be atomic and of form A/R 12, where R is the inter-atomic distance. A was adjusted so that the correct lattice parameter was obtained for C60 in the presence of a van der Waals interaction (∝ d −6, where d is the separation between two molecules) of —1.7 eV at equilibrium.Google Scholar
  8. [8]
    The TB single-MO calculations of the present paper used the cont;.-values from tables II and III of Ref. [6] for the hopping integrals and the lattice constant 14.10Å.Google Scholar
  9. [9]
    The largest deviation occurs for the Cu3Au-structure. Its favourable band-broadening energy is countered by the other components of the total energy.Google Scholar
  10. [10]
    V. P. Antropov, A. I. Liechtenstein, O.K. Andersen, O. Jepsen, and O. Gunnarsson, to be published.Google Scholar
  11. [11]
    For a review, see: R. Liebmann, Statistical mechanics of Periodic Frustrated Ising Systems, Springer, 1986.Google Scholar
  12. [12]
    A. Danielian, Phys. Rev., 133, A1344 (1964).ADSCrossRefGoogle Scholar
  13. [13]
    Note that the ..xxxx.. or ..yyyy.. stackings give the same structure as the AF stacking of ferromagnetic (100)-or (010)-planes.Google Scholar
  14. [14]
    N. D. Mackenzie and A.P. Young, J. Phys. C14, 3927 (1981), and Refs. therein.ADSGoogle Scholar
  15. [15]
    K. Binder, Z. f. Physik, B45, 61 (1981).ADSGoogle Scholar
  16. [16]
    K. Prassides, J. Tomkinson, C. Christides, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, Nature (London), 354, 462 (1991).ADSCrossRefGoogle Scholar
  17. [17]
    C. Christides, D. A. Neumann, K. Prassides, J. R. D. Copley, J. J. Rush, M. J. Rosseinsky, D. W. Murphy, and R. C. Haddon.Google Scholar
  18. [18]
    S. Saito and A. Oshiyama, Phys. Rev. Lett., 66, 2637 (1991); S. C. Erwin and W. Pickett, Science, 254, 842 (1991).ADSCrossRefGoogle Scholar
  19. [19]
    L. Degiorgi et al, Phys. Rev. B, 46, 11250 (1992); X.-D. Xiang at al, Science, 256, 1190 (1992); O.Klein et al, Phys. Rev. B, 46, 11247 (1992).ADSCrossRefGoogle Scholar
  20. [20]
    M. P. Gelfand and J. P. Lu, Phys. Rev. B, 46, 4367 (1992), and Z. Phys. B to be published.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. I Liechtenstein
    • 1
  • I. I Mazin
    • 1
  • O. Gunnarsson
    • 1
  • O. K. Andersen
    • 1
  • S. E. Burkov
    • 2
  • V. P. Antropov
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartGermany
  2. 2.McMaster University, IMRHamiltonCanada

Personalised recommendations