Advertisement

Structure and Lattice Dynamics of C70 Single Crystals

  • G. Meijer
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 117)

Abstract

Single crystals of C70 are grown from the vapour phase using chro-matographically purified C70 powder as starting material. Most of the crystals grown have the fcc habit but a minority fraction shows a perfect hep morphology. These hep grown crystals are also microscopically hep as evidenced from X-ray and electron diffraction studies. On lowering the temperature the ideal hcp crystals undergo two phase transitions due to a sequential freezing out of the rotations of the molecules around their two different axes, resulting in an orientationally ordered low-temperature monoclinic structure. Raman measurements on C70 crystals in this low-temperature structure reveal a large number of Raman active inter-molecular librational and vibrational modes, consistent with the selection rules for monoclinic P21/m-C70. Harmonic lattice dynamics calculations on the low temperature structure of solid C70 have been performed and a lattice structure in agreement with the experiments is found. From these calculations additional information on the orientational ordering is obtained and the observed Raman active lattice modes can be quantitatively interpreted.

Keywords

Electron Diffraction Study Single Photon Ionization Electron Diffraction Experiment Single Angle Calculated Raman Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.A. Heiney et al, Phys. Rev. Lett. 66, (1991), 2911 R. Sachidanandam and A.B. Harris, ibid. 67, (1991), 1467ADSCrossRefGoogle Scholar
  2. [2]
    W.I.F. David, R.M. Ibberson, T.J.S. Dennis, J.P. Hare, and K. Prassides, Euro-phys. Lett. 18, (1992), 219ADSCrossRefGoogle Scholar
  3. [3]
    G. van Tendeloo, A. Amelinckx, M.A. Verheijen, P.H.M. van Loosdrecht, and G. Meijer, Phys. Rev. Lett. 69, (1992), 1065ADSCrossRefGoogle Scholar
  4. [4]
    E.J.J. Groenen, O.G. Poluektov, M. Matsushita, J. Schmidt, J.H. van der Waals, and G. Meijer, Chem. Phys. Lett. 197, (1992), 314ADSCrossRefGoogle Scholar
  5. [5]
    G.B.M. Vaughan et al, Science 254 (1991) 1350ADSCrossRefGoogle Scholar
  6. [6]
    M.A. Verheijen, H. Meekes, G. Meijer, E. Raas, and P. Bennema, Chem. Phys. Lett. 191, (1992), 339ADSCrossRefGoogle Scholar
  7. [7]
    M.A. Verheijen et al, Chem. Phys. 166 (1992) 287 G. van Tendeloo et al, Europhys. Lett. 21, (1993), 329ADSCrossRefGoogle Scholar
  8. [8]
    P.H.M. van Loosdrecht, M.A. Verheijen, H. Meekes, P.J.M. van Bentum, and G. Meijer, Phys. Rev. B (in press)Google Scholar
  9. [9]
    B.J. Nelissen, P.H.M. van Loosdrecht, M.A. Verheijen, A. van der Avoird, and G. Meijer, Chem. Phys. Lett, (in press)Google Scholar
  10. [10]
    A.P.J.M. Jongenelis, T.H.M. van den Berg, A.P.J. Jansen, J. Schmidt, and A. van der Avoird, J. Chem. Phys. 89, (1988) 4023 T.H.M. van den Berg and A. van der Avoird, J. Phys.: Condens. Matter 1, (1989) 4047ADSCrossRefGoogle Scholar
  11. [11]
    P. Procacci, G. Cardini, P.R. Salvi and V. Schettino, Chem. Phys. Lett. 195, (1992) 347ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. Meijer
    • 1
  1. 1.Department of Molecular and Laser PhysicsUniversity of Nijmegen, ToernooiveldED NijmegenThe Netherlands

Personalised recommendations