The Birth of C60: Buckminsterfullerene

  • H. Kroto
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 117)

Abstract

Almost exactly five years after C60: Buckminsterfullerene (fullerene-60) was discovered serendipitously during a series of graphite laser vaporization experiments which were designed to simulate the chemistry in a red giant carbon star, the molecule has been isolated in macroscopic amounts. This breakthrough has triggered an explosion of research into its chemical and physical properties. The molecule has already exhibited a wide range of novel phenomena which promise exciting applications. Whether or not applications arise Buckminsterfullerene has a beauty and elegance that has excited the imaginations of scientists and laymen alike. It seems almost impossible to comprehend how the existence of the third well-characterised allotropie form of carbon could have evaded discovery until almost the end of the twentieth century. New fields of chemistry, physics and materials scince have been born and the articles contained in this volume cover some of the fascinating properties that have been uncovered and which pressage exciting implications for the future. This article surveys some of the key events which led to the birth of these new field and serves as an introduction to this volume.

Keywords

Dust Graphite Benzene Cage Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Osawa, E. Kagaku (Kyoto) 1970, 25, 854–863 (in Japanese); Chem. Abstr. 1971, 74, 75698V.Google Scholar
  2. 2).
    Yoshida, Z.; Osawa, E. Aromaticity; Kagakudojin: Kyoto, 1971, 174–178, (in Japanese).Google Scholar
  3. 3).
    Bochvar, D. A.; Gal’pern, E. G. Dokl. Akad. Nauk SSSR 1973, 209, 610–612 (English translation Proc. Acad. Sci. USSR 1973, 209, 239-241).Google Scholar
  4. 4).
    Davidson, R. A. Theor. Chim. Acta. 1981, 58, 193–195.CrossRefGoogle Scholar
  5. 5).
    Jones, D. E. H. New. Sci., 32 (3 November 1966), p. 245.Google Scholar
  6. 6).
    Jones, D. E. H. The Inventions of Daedalus; Freeman: Oxford, 1982; pp. 118–119.Google Scholar
  7. 7).
    Kroto, H. W.; Mckay, K. G. Nature (London), 1988, 331, 328–331.ADSCrossRefGoogle Scholar
  8. 8).
    Kroto, H. W. Chem. Brit. 1990, 26, 40–45.Google Scholar
  9. 9).
    Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature (London) 1985, 318, 162–163.ADSCrossRefGoogle Scholar
  10. 10).
    Kroto, H. W. Science 1988, 242, 1139–1145.ADSCrossRefGoogle Scholar
  11. 11).
    Curl, R. F. and Smalley, R. E. Science 1988, 242, 1017–1022.ADSCrossRefGoogle Scholar
  12. 12).
    Kroto, H. W. Chem. Soc. Rev. 1982, 11, 435–491.CrossRefGoogle Scholar
  13. 13).
    Dietz, T. G.; Duncan, M. A.; Powers, D. E.; Smalley, R. E. J. Chem. Phys. 1981, 74, 6511–6512.ADSGoogle Scholar
  14. 14).
    Rohlfing, E. A.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1984, 81, 3322–3330.ADSCrossRefGoogle Scholar
  15. 15).
    Bloomfield, L. A.; Geusic, M. E.; Freeman, R. R.; Brown, W. L. Chem. Phys. Lett. 1985, 121, 33–37.ADSCrossRefGoogle Scholar
  16. 16).
    Heath, J. R.; Zhang, Q.; O’Brien, S. C.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Am. Chem. Soc. 1987, 109, 359–363.CrossRefGoogle Scholar
  17. 17).
    Kroto, H. W.; Heath, J. R.; O’Brien, S. C; Curl, R. F.; Smalley, R. E. As trophys. J. 1987, 314, 352–355.ADSCrossRefGoogle Scholar
  18. 18).
    Kroto, H. W.; Balm, S. P.; Allaf, A. W., Chem Revs 1991, 91, 1213CrossRefGoogle Scholar
  19. 19).
    Heath, J. R.; O’Brien, S. C.; Zhang, Q.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Am. Chem. Soc. 1985, 107, 7779–7780.CrossRefGoogle Scholar
  20. 20).
    Zhang, Q. L.; O’Brien, S. C.; Heath, J. R.; Liu, Y.; Curl, R. F.; Kroto, H. W.; Smalley, R. E. J. Phys. Chem. 1986, 90, 525–528.CrossRefGoogle Scholar
  21. 21).
    Campbell, E. E. B.; Ulmer, G.; Hasselberger, B.; Busmann, H.-G.; Hertel, I. V. J. Chem. Phys. 1990, 93, 6900–6907.ADSCrossRefGoogle Scholar
  22. 22).
    Hasselberger, B; Busmann, H.-G.; Campbell, E. E. B. Appl. Surf. Sei. 1990, 46, 272–278.CrossRefGoogle Scholar
  23. 23).
    Campbell, E. E. B.; Ulmer, G.; Busmann; H.-G.; Hertel, I. V. Chem. Phys. Lett. 1990, 275, 505–510.ADSCrossRefGoogle Scholar
  24. 24).
    O’Keefe, A.; Ross, M. M.; Baronavski, A. P. Chem. Phys. Lett. 1986, 130, 17–19.ADSCrossRefGoogle Scholar
  25. 25).
    McElvany, S. W.; Nelson, H. H.; Baronavski, A. P.; Watson, C. H.; Eyler, J. R. Chem. Phys. Lett. 1987, 134, 214–219.ADSCrossRefGoogle Scholar
  26. 26).
    McElvany, S. W.; Dunlap, B. I.; O’Keefe, J. J. Chem. Phys. 1987, 86, 715–725.ADSCrossRefGoogle Scholar
  27. 27).
    Zimmerman, J. A.; Eyler, J. R.; Bach, S. B. H.; McElvany, S. W. J. Chem. Phys.; 1991, 94, 3556–3562.ADSCrossRefGoogle Scholar
  28. 28).
    McElvany, S. W. Int. J. Mass Spectrom. Ion Process 1990, 202, 81–98.ADSCrossRefGoogle Scholar
  29. 29).
    Yang, S. H.; Pettiette, C. L.; Conceicao, J.; Cheshnovsky, O.; Smalley, R. E. Chem. Phys. Lett. 1987, 139, 233–238.ADSCrossRefGoogle Scholar
  30. 30).
    Cheshnovsky, O.; Yang, S. H.; Pettiette, C. L.; Craycraft, M. J.; Liu, Y.; Smalley, R. E. Chem. Phys. Lett. 1987, 138, 119–124.ADSCrossRefGoogle Scholar
  31. 31).
    Schmalz, T. G.; Seitz, W. A.; Klein, D. J.; Hite, G. E. Chem. Phys. Lett. 1986, 230, 203–207.ADSCrossRefGoogle Scholar
  32. 32).
    Klein, D. J.; Schmalz, T. G.; Hite, G. E.; Seitz, W. A. J. Am. Chem. Soc. 1986, 208, 1301–1302.CrossRefGoogle Scholar
  33. 33).
    Kroto, H. W. Nature (London) 1987, 329, 529–531.ADSCrossRefGoogle Scholar
  34. 34).
    Schmalz, T. G.; Seitz, W. A.; Klein, D. J.; Hite, G. E. J. Am. Chem. Soc. 1988, 110, 1113–1127.CrossRefGoogle Scholar
  35. 35).
    Kroto, H. W, Angewandte Chemie 1991, 31, 111–129Google Scholar
  36. 36).
    Fowler, P. W.; Woolrich, J. Chem. Phys. Lett., 1986, 127, 78–83.ADSCrossRefGoogle Scholar
  37. 38).
    Gerhardt, Ph.; Loeffler, S.; Homann, K. Chem. Phys. Lett., 1987, 137, 306–310.ADSCrossRefGoogle Scholar
  38. 37).
    Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature (London)., 1990, 347, 354–358.ADSCrossRefGoogle Scholar
  39. 39).
    Krätschmer, W.; Fostiropoulos, K.; Huffman, D. R. Dusty Objects in the universe, Bussoletti, E.; Vittone, A. A. eds.; Kluwer: Dordrecht, 1990 (Conference in 1989).Google Scholar
  40. 40).
    Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. J. Chem. Soc. Chem. Commun. 1990, 1423–1425.Google Scholar
  41. 41).
    Meijer, G.; Bethune, D. S. Chem. Phys. Lett. 1990, 175, 1–2.ADSCrossRefGoogle Scholar
  42. 42).
    Meijer, G.; Bethune, D. S. J. Chem Phys. 1990, 93, 7800–7802.ADSCrossRefGoogle Scholar
  43. 43).
    Johnson, R. D.; Meijer, G.; Bethune, D. S. J. Am. Chem. Soc. 1990, 112, 8983–8984.CrossRefGoogle Scholar
  44. 44).
    Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.; Fostiropoulos, K.; Huffman, D. R.; Kraetschmer, W.; Rubin, Y.; Schriver, K. E.; Sensharma, K.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630–8633.CrossRefGoogle Scholar
  45. 45).
    Kroto, H. W.; Jura, M.; Astron. Astrophys., in press.Google Scholar
  46. 46).
    Hare J. P.; Kroto, H. W. Acc Chem Res, 1992, 25, 106–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. Kroto
    • 1
  1. 1.School of Chemistry and Molecular SciencesUniversity of SussexBrightonUK

Personalised recommendations