Advertisement

Human Neuroblastoma: Amplification of the N-myc Oncogene and Loss of a Putative Cancer-Preventing Gene on Chromosome 1p

  • M. Schwab
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 135)

Abstract

The nervous system is the most common site for the development of solid neoplasms in childhood. Neuroblastoma represents a tumor developing at peripheral sites from primitive neuroectodermal cells derived from the neural crests. It very often has a rapidly progressive clinical course. Many advances have been made in understanding the genesis and biology of this tumor which have been translated into better clinical management; however, little improvement in survival rates has been achieved, at least for the large group of patients who have metastatic tumor.

Keywords

Malignant Mesothelioma Human Neuroblastoma Cell Alveolar Rhabdomyosarcoma Cellular Oncogene Oncogene Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alitalo K, Schwab M (1986) Oncogene amplification in tumor cells. Adv Cancer Res 47: 235PubMedCrossRefGoogle Scholar
  2. Alitalo K, Schwab M, Lin CC, Varmus H, Bishop JM (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80: 1707PubMedCrossRefGoogle Scholar
  3. Amler LC, Schwab M (1989) Amplified N-myc in human neuroblastoma cells is often arranged as clustered tandem repeats of differently recombined DNA. Molec Cell Biol 9: 4903PubMedGoogle Scholar
  4. Amler LC, Schwab M (1992) Multiple amplicons of discrete sizes encompassing N-myc in neuroblastoma cells evolve through differential recombination from a large precursor DNA. Oncogene 7: 807PubMedGoogle Scholar
  5. Bartram CR, Berthold F (1987) Amplification and expression of the N-myc gene in neuroblastoma. Eur J Pediatr 146: 162PubMedCrossRefGoogle Scholar
  6. Beckwith JB and Perrin EV (1963) In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am J Pathol 43:1089PubMedGoogle Scholar
  7. Berthold F (1990) Overview Biology of neuroblastoma. In: Neuroblastoma: Tumor Biology and Therapy. Pochadly, Tebbi, (eds) CRC Press Inc, Boca Raton, p 1Google Scholar
  8. Blackwood EM, Eisenman RN (1991) Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211PubMedCrossRefGoogle Scholar
  9. Brodeur G, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Sience 224: 1121CrossRefGoogle Scholar
  10. Brodeur GM, Green AA, Hayes FA, Williams KG, Williams DL, Tsiatis AA (1981) Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41: 4678PubMedGoogle Scholar
  11. Carlsen NLT, Christiansen IJ, Schroeder H, Bro PV, Hesselberg K, Jensen KB, Nielsen KH (1986) Prognostic value of different staging systems in neuroblastomas and completeness of tumour exision. Arch Die Child 61: 832CrossRefGoogle Scholar
  12. Cohn SL, Herst CV, Maurer HS, Rosen ST (1987) N-myc amplification in an infant with stage IV-s neuroblastoma. J Clin Oncol 5:1441PubMedGoogle Scholar
  13. Cox D, Yuncken C, Spriggs A (1965) Minute chromatin bodies in malignant tumours of childhood. Lancet 2: 55CrossRefGoogle Scholar
  14. Douglass EC, Rowe ST, Valentine M, Parham DM, Berkow R, Bowman WP, Maurer HM (1991) Variant translocations of chromosome 13 in alveolar rhabdomyosarcoma. Genes, Chromosomes & Cancer 3: 480CrossRefGoogle Scholar
  15. Evans AE, D’Angio GB, Randolph J (1971) A proposed staging for children with neuroblastoma. Cancer 27: 374PubMedCrossRefGoogle Scholar
  16. Fearon ER, Hamilton SH, Vogelstein B (1987) Clonal analysis of human colorectal tumours. Science 238: 193PubMedCrossRefGoogle Scholar
  17. Flejter WL, Li FP, Antman KH, Testa JR (1989) Recurring loss involving chromosomes 1, 3 and 22 in malignant mesothelioma: Possible sites of tumor suppressor genes. Genes, Chromosomes and Cancer 1: 148CrossRefGoogle Scholar
  18. Fong CT, Dracopoli NC, White PS, Merril PT, Griffith RC, Housman DE, Brodeur GM (1989) Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: Correlation with N-myc amplification. Proc Natl Acad Sci USA 86: 3753PubMedCrossRefGoogle Scholar
  19. Fuller G, Bigner S (1992) Amplified cellular oncogenes in neoplasms of the central nervous system. Mut Res 276: 299Google Scholar
  20. Garson JA, McIntyre PG, Kemshead JT (1985) N-myc amplification in malignant astrocytoma. The Lancet 8457: 718CrossRefGoogle Scholar
  21. Genuardi M, Tshihira H, Anderson DE, Saunders GF (1989) Distal deletion of chromosome 1p in ductal carcinoma of the breast. Amer J Hum Genet 45: 73PubMedGoogle Scholar
  22. Hamann U, Wenzel A, Frank R, Schwab M (1991) The MYCN protein of human neuroblastoma cells is phosphorylated by casein kinase II in the central region and at serine 367. Oncogene 6: 1745PubMedGoogle Scholar
  23. Harnett PR, Kearsley JH, Hayward NK, Dracopoli NC, Kefford RF (1991) Loss of allelic heterozygosity on distal chromosome 1p in Merkel Cell Carcinom. Cancer Genet Cytogenet 54: 109PubMedCrossRefGoogle Scholar
  24. Hasegawa R, Tatematsu M, Imaida K et al. (1982) Neuroblastoma in situ. Acta Pathol Jpn 32: 537PubMedGoogle Scholar
  25. Kato GJ, Barrett J, Villa-Garcia M, Dang CV (1990) An amino-terminal c-myc domain required for neoplastic transformation activities transcription. Mol Cell Biol 10: 5914PubMedGoogle Scholar
  26. Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, Alt FW (1983) Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35: 359PubMedCrossRefGoogle Scholar
  27. Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, Cavanee WK (1985) Loss of heterozygosity in three embryonal tumors suggest a common pathogenetic mechanism. Nature 316: 330PubMedCrossRefGoogle Scholar
  28. Kramer S, Meadows AT, Jarrett P, Evans AE (1983) Incidence of childhood cancer: experience of a decade in a population-based registry. J Natl Cancers Inst 70: 49Google Scholar
  29. Laureys G, Speleman F, Opdenakker G, Benoit Y, Leroy J (1990) Constitutional translocation t(1;17)(p36;g12–21) in a patient with neuroblastoma. Genes, Chromosomes and Cancer 2: 252CrossRefGoogle Scholar
  30. Lee WH, Murphree AL, Benedict WF (1984) Expression and amplification of the N-myc gene in primary retinoblastoma. Nature 309: 458PubMedCrossRefGoogle Scholar
  31. Leister I, Weith A, Brüderlein S, Cziepluch C, Schlag P, Schwab M (1990) Human colorectal cancer: high frequency of deletions at chromosome 1p35. Cancer Res 50: 7232PubMedGoogle Scholar
  32. Lindström E, Salford LG, Heim S, Mandahl N, Strömblad S, Brun A, Mitelman F (1991) Trisomy 7 and sex chromosome loss need not be representative of tumor parenchyma cells in malignant glioma. Genes, Chromosomes & Cancer 3: 474CrossRefGoogle Scholar
  33. Mäkelä, TP, Saksela K, Alitalo K (1989) Two N-myc polypeptides with distinct amino termini encoded by the second and third exons of the gene. Mol Cell Biol 9: 1545PubMedGoogle Scholar
  34. Mäkelä TP, Koskinen PJ, Västrik I, Alitalo K (1992) Alternative forms of Max as enhancers of suppressors of myc-ras cotransformation. Science 256: 373PubMedCrossRefGoogle Scholar
  35. Martinsson T, Weith A, Cziepluch C, Schwab M (1989) Chromosome 1 deletions in human neuroblastomas: Generation and fine mapping of microclones from the distal 1p region. Genes, Chromosomes and Cancer 1: 67CrossRefGoogle Scholar
  36. Michaelis J, Kaatsch P (1986) Cooperative documentation of childhood malignancies in the FRG. System design and five-year results. Monogr Paediatr 18: 56Google Scholar
  37. Nakagawara A, Ikeda K, Tsuda T, Higashi K (1988) Biological characteristics of NMYC amplified neuroblastomas in patients over one year of age. In: Advances in neuroblastoma research; Evans, D’Angio, Seeger (eds). Alan R Liss, Inc. New York, p 31Google Scholar
  38. Nau M, Brooks B, Carney D, Gazdar A, Batey J, Sausville E, Minna J (1986) Human small-cell lung cancers show amplification and expression of the N-myc gene. Proc Natl Acad Sci USA 83: 1092PubMedCrossRefGoogle Scholar
  39. O’Rourke RW, Miller CW, Kato GJ, Simon KJ, Chen D-L, Dang CV, Koeffler HP (1990) A potential transcriptional activation element in the p53 protein. Oncogene 5: 1829PubMedGoogle Scholar
  40. Rustgi AK, Dyson N, Bernards R (1991) Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature 352: 541PubMedCrossRefGoogle Scholar
  41. Schwab M (1988) The MYC-box oncogenes. In: The Oncogene Handbook; Reddy, Skalka, Curran (eds) Elsevier Science Publishers BV, p 381Google Scholar
  42. Schwab M, Amler LC (1990) Amplification of cellular oncogenes: A predictor of clinical outcome in human cancer. Genes, Chromosomes and Cancer 1: 180Google Scholar
  43. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblasoma cell lines and a neuroblastoma tumor. Nature 305: 245PubMedCrossRefGoogle Scholar
  44. Schwab M, Alitalo K, Varmus KH, Bishop JM, George D (1983) A cellular oncogene (c-Ki-ras) is amplified, overexpressed, and located within karyotypic abnormalities in mouse adrenocortical tumor cells. Nature 303: 497PubMedCrossRefGoogle Scholar
  45. Schwab M, Varmus HE, Bishop JM, Grzeschik KH, Naylor S, Sakaguchi A, Brodeur G, Trent J (1984) Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 308: 288PubMedCrossRefGoogle Scholar
  46. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111PubMedCrossRefGoogle Scholar
  47. Simon D, Knowles B, Weith A (1991) Abnormalities of chromosome 1 and loss of heterozygosity on 1p in primary hepatomas. Oncogene 6: 765PubMedGoogle Scholar
  48. Suzuki T, Mugishima H, Fujisawa T, Okumi M, Okabe I, Yokota J, Terada M (1991) Loss of heterozygosity on chromosome 14 in neuroblastoma. In: Advances in Neuroblastoma Reserach; Evans AE, D’Angio GJ, Knudson Jr AG, Seeger RC (eds) Wiley-Liss, Inc, p135Google Scholar
  49. Takayama H, Suzuki T, Mugishima H, Fujisawa T, Ookuni M, Schwab M, Gehring M, Nakamura Y, Sugimura T, Terada M, Yokota J (1992) Deletion mapping of chromosomes 14q and 1p in human neuroblastoma. Oncogene 7: 1185PubMedGoogle Scholar
  50. Tonini GP, Verdona G, de Bernardi B, Sansone R, Massimo L, Cornaglia-Ferraris P (1987) N-myc oncogene amplification in a patient with IV-s neuroblastoma. Am J Pediatr Hematol Oncol 9:8CrossRefGoogle Scholar
  51. Weith A, Martinsson T, Cziepluch C, Brüderlein S, Amler LC, Berthold F, Schwab M (1989) Neuroblastoma consensus deletion maps to chromosome Ip36.1–2. Genes, Chromosomes and Cancer 1: 159CrossRefGoogle Scholar
  52. Wenzel A, Cziepluch C, Hamann U, Schürmann J, Schwab M (1991) The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. EMBO J 10: 3703PubMedGoogle Scholar
  53. Weston K, Bishop JM (1989) Transcriptional activation by the v-myb oncogene and its cellular progenitor, c-myb. Cell 58: 85PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • M. Schwab
    • 1
  1. 1.Division of CytogeneticsGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations