Sepsis pp 86-106 | Cite as

Bacterial Translocation: Myth versus Reality

  • M. D. Pasquale
  • M. D. Cipolle
  • F. B. Cerra
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 18)


Bacterial translocation has been defined as the passage of viable bacteria through the epithelial mucosa and lamina propria of the gastrointestinal (GI) tract to extraintestinal sites such as the mesenteric lymph nodes (MLN), spleen, liver, peritoneum, and blood [1]. More recently, however, Alexander et al. [2] have suggested a refinement of this definition to include all microbial translocation (viable and nonviable) as well as microbial products, e.g., endotoxin, across an anatomically intact intestinal barrier. It should be noted that neither definition describes the host or bacterial mechanisms responsible for such movement. Currently, it is felt that indigenous bacteria translocate continuously from the GI tract. The numbers of bacteria that translocate are low and the host immune system is able to destroy them prior to systemic spread. This process may very well be a major mechanism of immune sampling to maintain “natural immunity” to a variety of pathogens. Thus, in the presence of normal GI ecology and a well-functioning immune system, the relative impermeability of the GI mucosa, “gut barrier function”, prevents invasion of bacteria into extraintestinal sites [3].


Kupffer Cell Hemorrhagic Shock Bacterial Translocation Thermal Injury Essential Fatty Acid Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berg RD, Garlington AN (1979) Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobioic mouse model. Infect Immun 23:403.PubMedGoogle Scholar
  2. 2.
    Alexander JW, Boyce ST, Babcock GF et al (1990) The process of microbial translocation. Ann Surg 212:496.PubMedCrossRefGoogle Scholar
  3. 3.
    Berg RD: Conspectus: bacterial translocation from the gastrointestinal tract.Google Scholar
  4. 4.
    Madera JL (1990) Pathobiology of the intestinal epithelial barrier. Am J Pathol 137:1273.Google Scholar
  5. 5.
    Dobbins WO (1982) Gut immunophysiology: a gastroenterologist’s view with emphasis on pathophysiology. Am J Physiol 242:G1.PubMedGoogle Scholar
  6. 6.
    Fine J (1965) Current status of the problem of traumatic shock. Surg Gynecol Obstet 120:537.PubMedGoogle Scholar
  7. 7.
    Schimpff SC (1980) Infection prevention during profound granulocytopenia. Ann Intern Med 93:358.PubMedGoogle Scholar
  8. 8.
    Kreger BE, Craven DE, Carling PC et al (1980) Gram negative bacteremia. III. Reassessment of etiology, epidemiology, and ecology in G12 patients. Am J Med 68:332.PubMedCrossRefGoogle Scholar
  9. 9.
    Garrison RN, Fry DE, Beberich S et al (1982) Enterococcal bacteremia: clinical implications and determinants of death. Ann Surg 196:43.PubMedCrossRefGoogle Scholar
  10. 10.
    Fry DE, Klamer TW, Garrison RN et al (1981) Atypical clostridial bacteremia. Surg Gynecol Obstet 153:28.PubMedGoogle Scholar
  11. 11.
    Stone HH, Kolb LD, Carrie CA et al (1974) Candida sepsis: pathogenesis and principles of treatment. Ann Surg 179:697.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilmore DW, Smith RJ, O’Dwyer ST et al (1988) The gut: a central organ after surgical stress. Surgery 104:917.PubMedGoogle Scholar
  13. 13.
    Saadia R, Schein M, MacFarlane C et al (1990) Gut barrier function and the surgeon. Br J Surg 77:487.PubMedCrossRefGoogle Scholar
  14. 14.
    Fink MP (1993) Adequacy of gut oxygenation in endotoxemia and sepsis. Crit Care Med 21:54.Google Scholar
  15. 15.
    Haglund U (1993) Systemic mediators released from the gut in critical illness. Crit Care Med 21:515.Google Scholar
  16. 16.
    Deitch EA, Bridges W, Baker J et al (1988) Hemorrhagic shock-induced bacterial translocation is reduced by xanthine-oxidase inhibition or inactivation. Surgery 104:191.PubMedGoogle Scholar
  17. 17.
    Deitch EA Morrison J, Berg RD et al (1990) Effect of hemorrhagic shock on permeability in conventional and antibiotic-decontaminated rats. Crit Care Med 18:529.PubMedCrossRefGoogle Scholar
  18. 18.
    Hidalgo IJ, Raub TJ, Barchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial cell permeability. Gastroenterology 96:736.PubMedGoogle Scholar
  19. 19.
    Chiu CJ, McArdle AH, Brown R et al (1970) Intestinal mucosal lesion in low-flow states. Arch Surg 101:478.PubMedCrossRefGoogle Scholar
  20. 20.
    Saydjari R, Beerthuizen GIJM, Townsend CM et al (1991) Bacterial translocation and its relationship to visceral blood flow, gut mucosal ornithine decarboxylase activity, and DNA in pigs. J Trauma 31:639.PubMedCrossRefGoogle Scholar
  21. 21.
    Baker JW, Deitch EA, Li M et al (1988) Hemorrhagic shock induced bacterial translocation from the gut. J Trauma 28:896.PubMedCrossRefGoogle Scholar
  22. 22.
    Morris SE, Navaratnam N, Herndon DN (1990) A comparison of effects of thermal injury and smoke inhalation on bacterial translocation. J Trauma 30:639.PubMedGoogle Scholar
  23. 23.
    Navaratnam N, Morris SE, Townsend CM et al (1989) Bacterial translocation and selective mesenteric artery perfusion in an ovine model. Proc Am Burn Assoc 21:240.Google Scholar
  24. 24.
    Ma L, Ma JW, Deitch EA et al (1989) General susceptibility to mucosal damage leads to bacterial translocation in a murine burn model. J Trauma 29:1245.PubMedCrossRefGoogle Scholar
  25. 25.
    Parks DA, Bulkley GB, Granger DN et al (1982) Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology 82:9.PubMedGoogle Scholar
  26. 26.
    Grisham MB, Hernandez LA, Granger DN (1986) Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 251:567.Google Scholar
  27. 27.
    Deitch EA, Berg RD, Specian RD (1987) Endotoxin promotes the translocation of bacteria from the gut. Arch Surg 122:185.PubMedCrossRefGoogle Scholar
  28. 28.
    Deitch EA, Taylor M, Grisham MB et al (1989) Endotoxin induces bacterial translocation and increases xanthine oxidase activity. J Trauma 29:1679.PubMedCrossRefGoogle Scholar
  29. 29.
    Deitch EA, Specian RD, Berg RD (1991) Endotoxin-induced bacterial translocation and mucosal permeability: role of xanthine oxidase complement activation and macrophage products. Crit Care Med 19:78.CrossRefGoogle Scholar
  30. 30.
    Zimmermann BT, Parks DA, Grisham MB et al (1988) Allopurinol does not enhance antioxidant properties of extracellular fluid. Am J Physiol 255:H202.Google Scholar
  31. 31.
    Fink MP, Antorrsson JB, Wang H et al (1991) Increased intestinal permeability in endotoxic pigs: mesenteric hypoperfusion as an etiologic factor. Arch Surg 126:211.PubMedCrossRefGoogle Scholar
  32. 32.
    Menzies IS (1987) Transmucosal passage of inert molecules in health and disease. In: Skadhauge E, Heintze K (eds) Falk Symposium 36. MTP Press, Lancaster, p 527.Google Scholar
  33. 33.
    Bulkley GB, Kuietys PR, Parks DA et al (1985) Relationship of blood flow and oxygen consumption to ischemic injury in a canine small intestine. Gastroenterology 89:852.PubMedGoogle Scholar
  34. 34.
    Deitch EA, Specian RD, Grisham MB et al (1992) Zymosan-induced bacterial translocation: a study of mechanisms, Crit Care Med 20:782.PubMedCrossRefGoogle Scholar
  35. 35.
    Schirmer WJ, Schirmer JM, Neff GB et al (1988) Systemic complement activation produces thermodynamic changes characteristic of sepsis. Arch Surg 123:316.PubMedCrossRefGoogle Scholar
  36. 36.
    Deitch EA, Ma W, Ma L et al (1990) Protein malnutrition predisposes the inflammatory-induced gut-origin septic states. Ann Surg 211:560.PubMedCrossRefGoogle Scholar
  37. 37.
    Walker RI, Porvaznik MJ (1978) Disruption of the permeability barrier (zonula occludens) between intestinal epithelial cells by lethal doses of endotoxin. Infect Immun 21:655.PubMedGoogle Scholar
  38. 38.
    O’Dwyer ST, Michie HR, Ziegler TR et al (1988) A single dose of endotoxin increases intestinal permeability in humans. Arch Surg 123:1459.PubMedCrossRefGoogle Scholar
  39. 39.
    Steiner M, Bourges HR, Freedman LS et al (1968) Effect of starvation on the tissue composition of the small intestine in the rat. Am J Physiol 215:75.PubMedGoogle Scholar
  40. 40.
    Souba WW, Klimberg VS, Plumley DA et al (1990) Current research review: the role of glutamine in maintaining a healthy gut and supporting metabolic response to injury and infection. J Surg Res 48:383.PubMedCrossRefGoogle Scholar
  41. 41.
    Barton RG, Cerra FB, Wells CL (1992) Effect of a diet deficient in essential fatty acids on the translocation of intestinal bacteria. JPEN 16:122.CrossRefGoogle Scholar
  42. 42.
    Wells CL, Maddaus MA, Simmons RL (1987) Role of the macrophage in the translocation of intestinal bacteria. Arch Surg 122:48.PubMedCrossRefGoogle Scholar
  43. 43.
    Wells CL, Maddaus MA, Simmons RL (1987) Role of the macrophage in the translocation of intestinal bacteria. Arch Surg 122:48.PubMedCrossRefGoogle Scholar
  44. 44.
    Mainous MR, Rso P, Berg RD et al (1991) Studies of the route, magnitude, and time course of bacterial translocation in a model of systemic inflammation. Arch Surg 126:33.PubMedCrossRefGoogle Scholar
  45. 45.
    Wells CL, Maddaus MA, Simmons RL (1988) Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 10:858.CrossRefGoogle Scholar
  46. 46.
    Alexander JW, Boyce ST, Babcock GF et al (1990) The process of microbial translocation. Ann Surg 212:496.PubMedCrossRefGoogle Scholar
  47. 47.
    Cole GT, Sesham KR, Pope LM et al (1988) Morphologic aspects of gastrointestinal tract invasion by Candida albicans in the infant mouse. J Med Vet Mycol 26:173.PubMedCrossRefGoogle Scholar
  48. 48.
    Wells CL, Jechorek RP, Erlandson SL (1990) Evidence for the translocation of Enter-ococcus faecalis across the mouse intestinal tract. J Infect Dis 162:82.PubMedCrossRefGoogle Scholar
  49. 49.
    Papa M, Halperin Z, Rubinstein E et al (1983) The effect of ischemia of the dog’s colon on transmural migration of bacteria and endotoxin. J Surg Res 35:264.PubMedCrossRefGoogle Scholar
  50. 50.
    Wells CL, Rotstein OD, Pruett TL et al (1986) Intestinal bacteria translocate into experimental intra-abdominal abscesses. Arch Surg 121:102.PubMedCrossRefGoogle Scholar
  51. 51.
    Rosenberg JC, Kaplan MP, Lyse K (1980) Mechanisms of steroid suppression of immune function: effect of methylprednisolone on lymphocyte activation and proliferation. Surgery 88:193.PubMedGoogle Scholar
  52. 52.
    Berg RD (1983) Bacterial translocation from the gastrointestinal tract of mice receiving immunosuppressive chemotherapeutic agents. Curr Microbiol 8:285.CrossRefGoogle Scholar
  53. 53.
    Berg RD, Itoh K (1986) Bacterial translocation from the gastrointestinal tract — immunologic aspects. Microecol Ther 16:131.Google Scholar
  54. 54.
    Christan NV, McLean RPH, Meakins JL (1980) Host defense in blunt trauma: interrelationships of kinetics of energy and depressed neutrophil function, neutrophil status and sepsis. J Trauma 20:833.CrossRefGoogle Scholar
  55. 55.
    O’Mahorrey JB, Palder S, Roderick M et al (1983) Depression of cellular immunity after multiple trauma in the absence of sepsis. J Trauma 23:654 (abstract).CrossRefGoogle Scholar
  56. 56.
    Sab T, Blumernstock FA, Scoville WA (1978) Cryoprecipitate reversal of opsenic alpha-2 surface binding glycoprotein deficiency in septic surgical and traumatic patients. Science 20:622.CrossRefGoogle Scholar
  57. 57.
    Altura BM, Hershey SG (1973) Reticuloendothelial function in experimental injury and tolerance to shock. Adv Exp Med Biol 33:545.Google Scholar
  58. 58.
    Ravin HA, Fine J (1962) Biological implications of intestinal endotoxins. Fed Proc 21:65.PubMedGoogle Scholar
  59. 59.
    Fink MP, Gardiner M, Macvittie JJ (1985) Sublethal hemorrhage impairs the acute peritoneal inflammatory response in rats. J Trauma 25:334.CrossRefGoogle Scholar
  60. 60.
    Owens WE, Barg RD (1980) Bacterial translocation from the gastrointestinal tract of athymic (nu/nu) mice. Infect Immun 27:461.PubMedGoogle Scholar
  61. 61.
    Border JR, Hassett J, LaDuce J et al (1987) The gut origin septic states in blunt multiple trauma (ISS=40) in the ICU. Ann Surg 206:427.PubMedCrossRefGoogle Scholar
  62. 62.
    Faist E, Riedel A, Riebu H et al (1986) Prostaglandin E2 dependent suppression of interleukin 2 production in patients with major trauma. Conference Program American Association for the Surgery of Trauma, Honolulu, p 56.Google Scholar
  63. 63.
    Wilmore DW, Lang JM, Mason AD et al (1974) Catecholamines: mediators of the hypermetabolic response to thermal injury. Ann Surg 180:653.PubMedCrossRefGoogle Scholar
  64. 64.
    Bjerson AB, Bjorson HS, Altemeier WA (1981) Serum mediated inhibition of polymorphonuclear leukocyte function following burn injury. Ann Surg 194:568.CrossRefGoogle Scholar
  65. 65.
    Antonacci AC, Good RA, Gupten S (1982) T-cell subpopulations following thermal injury. Surg Gynecol Obstet 155:1.PubMedGoogle Scholar
  66. 66.
    Alexander JW, Moncrief JA (1986) Alterations of the immune response following severe thermal injury. Arch Surg 93:75.Google Scholar
  67. 67.
    Wilson RF (1986) Sepsis prophylaxis in the surgical patient at risk. In: Sibbald WJ, Sprung CL (eds) New Horizons, p 301.Google Scholar
  68. 68.
    Holper K, Olcay I, Kitahama A et al (1974) Effect of ischemia on hepatic parenchymal and reticuloendothelial function in the baboon. Surgery 76:423.PubMedGoogle Scholar
  69. 69.
    Schirmer WJ, Schirmer JM, Naff GB et al (1987) Alternate pathway complement activation induces reductions in effective hepatic blood flow. Ann Surg 44:304.Google Scholar
  70. 70.
    Machiedo GN, Hurd T, Rush BF Jr et al (1988) Temporal relationship of hepatocellular dysfunction and ischemia in sepsis. Arch Surg 123:42.CrossRefGoogle Scholar
  71. 71.
    Jones WF II, Minei JP, Barber AE et al (1990) Bacterial translocation and intestinal atrophy after thermal injury and burn wound sepsis. Ann Surg 211:399.PubMedCrossRefGoogle Scholar
  72. 72.
    Marano MA, Moldawer LL, Fong Y et al (1988) Cachectin/TNF production in experi mental burns and Pseudomonas infection. Arch Surg 123:1383.PubMedCrossRefGoogle Scholar
  73. 73.
    Chandra RK (1983) Nutrition, infection and immunity: present knowledge and future directions. Lancet i:688.Google Scholar
  74. 74.
    Meyer J, Yurt RN, Dubancy R et al (1988) Differential neutrophil activation before and after endotoxin infusion in enterally versus parenterally fed volunteers. Surg Gynecol Obstet 167:501.PubMedGoogle Scholar
  75. 75.
    Berg RD, Owens WE (1979) Inhibition of translocation of viable E. coli from the gastrointestinal tract of mice by bacterial antagonism. Infect Immun 25:820.PubMedGoogle Scholar
  76. 76.
    Deitch EA, Sittig K, Li M, Berg R (1990) Obstructive jaundice promotes bacterial translocation from the gut. Am J Surg 159:79.PubMedCrossRefGoogle Scholar
  77. 77.
    Slocum MM, Sittig KM, Specian RD et al (1992) Absence of intestinal bile promotes bacterial translocation. Am Surg 58:305.PubMedGoogle Scholar
  78. 78.
    Alverdy JC, Aoys E, Moss GS (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104:185.PubMedGoogle Scholar
  79. 79.
    Spaeth G, Specian RD, Berg RD et al (1990) Bulk prevents bacterial translocation induced by the oral administration of total parenteral nutrition solution. JPEN 14:442.CrossRefGoogle Scholar
  80. 80.
    Carrico CY, Meakins JL, Marchall JC et al (1986) Multiple-organ failure syndrome. Arch Surg 121:196.PubMedCrossRefGoogle Scholar
  81. 81.
    Billiar TR, Maddaus MA, West MA et al (1988) Intestinal gram negative bacterial overgrowth in vivo augments in the in vitro response of Kupffer cells to endotoxin. Ann Surg 208:532.PubMedCrossRefGoogle Scholar
  82. 82.
    Cerra FB (1987) Hypermetabolism, organ failure, and metabolic support. Surgery 101:1.PubMedGoogle Scholar
  83. 83.
    Keller GA, West MA, Cerra FB et al (1985) Multiple systems organ failure: modulation of hepatocyte protein synthesis by endotoxin activated Kupffer cells. Ann Surg 201:87.PubMedGoogle Scholar
  84. 84.
    Pardy BJ, Spencer RC, Dudley HAF (1977) Hepatic reticuloendothelial protection against bacteremia in experimental hemorrhagic shock. Surgery 81:193.PubMedGoogle Scholar
  85. 85.
    Katz S, Grosfield JL, Gross K et al (1984) Impaired bacterial clearance and trapping in obstructive jaundice. Ann Surg 199:14.PubMedCrossRefGoogle Scholar
  86. 86.
    Sabe TM, Jaffe E (1980) Plasma fibronectin (opsonic glyceprotein): its synthesis by vascular endothelial cells and role in cardiopulmonary integrity following trauma as related to reticuloendothelial function. Am J Med 68:577.CrossRefGoogle Scholar
  87. 87.
    Cerra FB, Holman RT, Bankey PE et al (1990) Nutritional pharmacology: its role in the hypermetabolism-organ failure syndrome. Crit Care Med 18:S154.PubMedCrossRefGoogle Scholar
  88. 88.
    Marshall JC, Lee C, Meakins JV et al (1987) Kupffer cell modulation of the systemic immune response. Arch Surg 122:191.PubMedCrossRefGoogle Scholar
  89. 89.
    Kahky MP, Daniel CO, Cricz AB et al (1990) Portal infusion of tumor necrosis factor increases mortality in rats. J Surg Res 49:138.PubMedCrossRefGoogle Scholar
  90. 90.
    Marshall JC, Christou NV, Horn R et al (1988) The microbiology of multiple organ failure: the proximal gastrointestinal tract as an occult reservoir of pathogens. Arch Surg 123:309.PubMedCrossRefGoogle Scholar
  91. 91.
    Baker JN, Deitch EA, Berg RD et al (1988) Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 28:896.PubMedCrossRefGoogle Scholar
  92. 92.
    Sori AJ, Rush BF Jr, Lyse TW et al (1988) The gut as source of sepsis after hemorrhagic shock. Am J Surg 155:187.PubMedCrossRefGoogle Scholar
  93. 93.
    Koziol JM, Rush BF Jr, Smith SM et al (1988) Occurrence of bacteremia during and after hemorrhagic shock. J Trauma 28:10.PubMedCrossRefGoogle Scholar
  94. 94.
    Rush BF Jr, Sori AJ, Murphy TF et al (1988) Endotoxemia and bacteremia during hemorrhagic shock. Ann Surg 207:549.PubMedCrossRefGoogle Scholar
  95. 95.
    Goris RJA, Boekholtz WKF, van Bebber IPT et al (1986) Multiple organ failure and sepsis without bacteremia: an experimental model. Arch Surg 121:897.PubMedCrossRefGoogle Scholar
  96. 96.
    Deitch EA, Kemper AC, Specian RD et al (1992) A study of the relationship among survival, gut origin sepsis, and bacterial translocation in a model of systemic inflammation. J Trauma 32:141.PubMedCrossRefGoogle Scholar
  97. 97.
    Fukushima R, Gianotti L, Alexander JW et al (1992) The degree of bacterial translocation is a determinant factor for mortality after burn injury and is improved by prostaglandin analogs. Ann Surg 216:438.PubMedCrossRefGoogle Scholar
  98. 98.
    Morales J, Kibsey P, Thomas PD et al (1992) The effects of ischemia and ischemia-reperfusion on bacterial translocation, lipid peroxidation and gut histology: studies on hemorrhagic shock in pigs. J Trauma 33:221.PubMedCrossRefGoogle Scholar
  99. 99.
    Moore FA, Moore EE, Poggetti R et al (1991) Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma 31:629.PubMedCrossRefGoogle Scholar
  100. 100.
    Levine GM, Deren JJ, Steiger E et al (1974) Role of intake in maintenance of gut mass and disaccharide activity. Gastroenterology 67:975.PubMedGoogle Scholar
  101. 101.
    Mochizuki H, Trocki O, Dominioni L et al (1984) Mechanism of prevention postburn hypermetabolism and catabolism by early enteral feeding. Ann Surg 200:297.PubMedCrossRefGoogle Scholar
  102. 102.
    O’Dwyer ST, Scott T, Smith RJ et al (1987) 5-fluorouracil toxicity on small intestinal mucosa but not white blood cells is decreased by glutamine. Clin Res 35:369 (abstract).Google Scholar
  103. 103.
    Alexander JW (1986) Nutrition and infection: new perspectives for an old problem. Arch Surg 121:966.PubMedCrossRefGoogle Scholar
  104. 104.
    Moore FA et al (1989) TEN versus TPN following major abdominal-reduced septic morbidity. J Trauma 29:916.PubMedCrossRefGoogle Scholar
  105. 105.
    Cerra FB et al (1991) Nutrient modulation of inflammatory and immune function. Ann J Surg 161:230.CrossRefGoogle Scholar
  106. 106.
    Daly JM, Lieberman MD, Goldfine J et al. (1992) Enteral nutrition with supplemental arginine, RNA and omega-3 fatty acids in patients after operation: immunologic, metabolic, and clinical outcome. Surgery 112:56.PubMedGoogle Scholar
  107. 107.
    Cerra FB et al (1990) Effects of enteral nutrient on in vitro tests of immune function in ICU patients: a preliminary report. Nutrition 56:84.Google Scholar
  108. 108.
    Stowtenbeek CP, Seane HFK, Miranda DR et al (1984) The effect of SDD on colonization and infection rate in multiple trauma patients. Intensive Care Med 10:185.CrossRefGoogle Scholar
  109. 109.
    Ledingham IM, Eastaway AT, McKay IC et al (1988) Triple regimen of SDD, systemic cefotaxime, and microbiological surveillance for prevention and acquired infection in ICU. Lancet i:785.CrossRefGoogle Scholar
  110. 110.
    Kerver AIH, Rommes JA, Meuisseu-Verhage EAE et al (1988) Prevention of colonization and infection in critically ill patients: a prospective randomized study. Intensive Care Med 16:1087.Google Scholar
  111. 111.
    Brun-Buissen C, Legrande P, Rauss A et al (1989) Intestinal decontamination for control of nosocomial multi-resistant and gram negative bacilli. Study of an outbreak in an intensive care unit. Ann Intern Med 110:873.Google Scholar
  112. 112.
    Hartenauer U, Muney AE, Williams PS et al (1990) Infection surveillance and selective decontamination of the digestive tract (SDD) in critically ill patients: results of a controlled study. Infection 18:522.CrossRefGoogle Scholar
  113. 113.
    Cerra FB, Maddaus MA, Dunn DL et al (1992) Selective gut decontamination reduces nosocomial infections and length of stay but not mortality or organ failure in surgical intensive care unit patients. Arch Surg 127:163.PubMedCrossRefGoogle Scholar
  114. 114.
    Koruda MJ (1993) Gut sterilization to prevent nosocomial infection. In: Solonkin JS (ed) New Horizons, p 1994.Google Scholar
  115. 115.
    Chin C, Scott W, Gurd F (1970) Intestinal mucosal lesion in low-flow states. II: the protective effect of intraluminal glucose as energy substrate. Arch Surg 101:484.CrossRefGoogle Scholar
  116. 116.
    Shute K (1976) Effect of intraluminal oxygen on experimental ischemia of the intestine. Gut 17:1001.PubMedCrossRefGoogle Scholar
  117. 117.
    Oldham K, Guice K, Gore D et al (1987) Treatment of intestinal ischemia with oxygenated intraluminal perfluorocarbons. Am J Surg 153:291.PubMedCrossRefGoogle Scholar
  118. 118.
    Salzman A, Wallert S, Warre H et al (1993) Intraluminal oxygenation ameliorates ischemia/reperfusion-induced gut mucosal hypermeability in pigs. Circ Shock 40:37.PubMedGoogle Scholar
  119. 119.
    Hyuang KF, Chung DH, Herndon DN (1993) Insulinlike growth factor reduces gut atrophy and bacterial translocation after severe burn injury. Arch Surg 128:47.CrossRefGoogle Scholar
  120. 120.
    Gianotti L, Alexander W, Jukushima R, Pyles T (1993) Reduction of bacterial translocation with oral fibroblast growth factor and sucralfate. Am J Surg 165:195.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • M. D. Pasquale
  • M. D. Cipolle
  • F. B. Cerra

There are no affiliations available

Personalised recommendations