Skip to main content

Sepsis and Nutritional Blood Flow

  • Chapter
Sepsis

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 18))

Abstract

Despite the great progress that has been made in intensive care medicine, the incidence of sepsis and its sequelae has not diminished and still carries high mortality [1, 2]. Although the pathogenesis is not completely understood, sepsis is generally known to be caused by the activation of inflammatory cells and the release of endogenous humoral mediators in response to bacterial products, in particular endotoxins [3]. Evidence is slowly accumulating that excessively activated endogenous inflammatory cells and their compounds may be responsible for structural damage and functional deterioration of remote vital organ systems [4]. However, besides the activation of neutrophils and macrophages and the actions of cytokines, arachidonic acid metabolites, complement products, proteolytic enzymes and toxic oxygen radicals, impaired nutritional blood flow has been advocated as a key determinant for the development of organ dysfunction and subsequent multiple organ failure in septic shock [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bone RC, Fisher CJ, Clemmer TP, Slotman GJ, Metz CA, Balk RA (1989) The methylprednisolone severe study group: Sepsis syndrome: a valid clinical entity. Crit Care Med 17:389–393.

    Article  PubMed  CAS  Google Scholar 

  2. Harris RL, Musher DM, Bloom K et al (1987) Manifestations of sepsis. Arch Intern Med 147:1895–1906.

    Article  PubMed  CAS  Google Scholar 

  3. Morrison DC, Ulevitch RJ (1978) The effects of bacterial endotoxins in host mediation systems. Am J Pathol 93:527–617.

    Google Scholar 

  4. Goris RJA (1990) Mediators of multiple organ failure. Intensive Care Med 16:S192–S196.

    Article  PubMed  Google Scholar 

  5. Thijs LG, Schneider AJ, Groeneveld ABJ (1990) The haemodynamics of septic shock. Intensive Care Med 16:S182–S186.

    Article  PubMed  Google Scholar 

  6. Kreimeier U, Ruiz-Morales M, Messmer K (1993) Comparison of the effects of volume resuscitation with dextran 60 vs Ringers’s lactate on central hemodynamics, regional blood flow, pulmonary function, and blood composition during hyperdynamic endotoxemia. Circ Shock 39:89–99.

    PubMed  CAS  Google Scholar 

  7. Messmer K, Kreimeier U, Hammersen F (1988) Multiple organ failure: clinical implications to macro-and microcirculation. In: Manabe H, Zweifach BW, Messmer K (eds) Microcirculation in circulatory disorders. Springer, Berlin Heidelberg New York, pp 147–157.

    Chapter  Google Scholar 

  8. Thijs LG, Groeneveld ABJ (1987) The circulatory defect of septic shock. In: Vincent JL, Thijs LG (eds) Septic shock. Springer, Berlin Heidelberg New York, pp 161–178.

    Chapter  Google Scholar 

  9. Baker CC, Chaudry IH, Gaines HO, Baue AE (1983) Evaluation of factors affecting mortality rate after sepsis in murine cecal ligation and puncture model. Surgery 94:331–335.

    PubMed  CAS  Google Scholar 

  10. Lang CH, Bagby GJ, Bornside GH, Vial LJ, Spitzer JJ (1983) Sustained hypermetabolic sepsis in rats: characterization of the model. J Surg Res 35:201–210.

    Article  PubMed  CAS  Google Scholar 

  11. Short BL, Gardiner WM, Walker RI, Fletcher JR, Rogers JE (1983) Rat intraperitoneal sepsis — a clinically relevant model. Circ Shock 10:351–359.

    PubMed  CAS  Google Scholar 

  12. Kreimeier U, Hammersen F, Ruiz-Morales M, Yang Zh, Messmer K (1991) Redistribution of intraorgan blood flow in acute, hyperdynamic porcine endotoxemia. Eur Surg Res 23:85–99.

    Article  PubMed  CAS  Google Scholar 

  13. Wichtermann KA, Baue AE, Chaudry IA (1980) Sepsis and septic shock — a review of laboratory models and a proposal. J Surg Res 29:189–201.

    Article  Google Scholar 

  14. Bersten AD, Gnidec AA, Rutledge FS, Sibbald WJ (1990) Hyperdynamic sepsis modifies a PEEP-mediated redistribution in organ blood flows. Am Rev Respir Dis 141:1198–1208.

    PubMed  CAS  Google Scholar 

  15. Fish RE, Lang CH, Spitzer JA (1986) Regional blood flow during continuous low-dose endotoxin infusion. Circ Shock 18:267–275.

    PubMed  CAS  Google Scholar 

  16. Wang P, Zhou M, Rana MW, Ba ZF, Chaudry IH (1992) Differential alterations in microvascular perfusion in various organs during early and late sepsis. Am J Physiol 263:G38–G43.

    PubMed  CAS  Google Scholar 

  17. Abel FL (1989) Myocardial function in sepsis and endotoxin shock. Am J Physiol 26:R1265–R1281.

    Google Scholar 

  18. Lang CH, Bagby GJ, Ferguson JL, Spitzer JJ (1984) Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am J Physiol 246:R331–R337.

    PubMed  CAS  Google Scholar 

  19. Parker MM, Shelhammer JH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490.

    PubMed  CAS  Google Scholar 

  20. Weisel RD, Vito L, Dennis RC (1977) Myocardial depression during sepsis. Am J Surg 133:512–521.

    Article  PubMed  CAS  Google Scholar 

  21. Frey L, Kreimeier U, Schwarz G, von Hirschhausen E, Messmer K (1990) Deterioration of renal function during hyperdynamic endotoxemia correlates with redistribution of intrarenal blood flow. Eur Surg Res 22:66 (abstract).

    Google Scholar 

  22. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644.

    Article  PubMed  CAS  Google Scholar 

  23. Oettinger W, Roscher R, Jonescu J, Beger HG (1986) Renal prostaglandin-release, blood flow, and function in porcine endotoxic shock. Langenbecks Arch Chir 187-190.

    Google Scholar 

  24. Nagler AL (1980) The circulatory manifestations of bacterial endotoxemia. In: Kaley G, Altura BM (eds) Microcirculation. University Park Press, Baltimore, pp 107–117.

    Google Scholar 

  25. Cryer HG, Garrison RN, Harris PD, Greenwald BH, Alsip NL (1990) Prostaglandins mediate skeletal muscle arteriole dilation in hyperdynamic bacteremia. Am J Physiol 259:H728–H734.

    PubMed  CAS  Google Scholar 

  26. Cryer HM, Garrison RN, Harris PD (1988) Role of muscle microvasculature during hyperdynamic and hypodynamic phases of endotoxin shock in decerebrate rats. J Trauma 28:312–318.

    Article  PubMed  CAS  Google Scholar 

  27. Brånemark PI, Urbaschek B (1967) Endotoxins in tissue injury. Vital microscopic studies on the effect of endotoxin from E. coli on the microcirculation. Angiology 18:667–671.

    Google Scholar 

  28. Urbaschek B, Huth K, Krech HJ (1969) Endotoxin-induced microcirculatory disturbances and interaction to various metabolic parameters including the coagulation system. Bibl Anat 10:442–448.

    PubMed  CAS  Google Scholar 

  29. Zweifach BW, Nagler AL, Thomas L (1956) The role of epinephrine in the reactions produced by endotoxins of gram negative bacteria. The changes produced by endotoxin in the vascular reactivity of epinephrine in the rat mesoappendix and the isolated, perfused rabbit ear. J Exp Med 104:881–896.

    CAS  Google Scholar 

  30. Bond RF (1985) Peripheral circulatory responses to endotoxin. In: Hinshaw LB (ed) Pathophysiology of endotoxin. Elsevier Science, Amsterdam, pp 36–75 (Handbook of endotoxin, vol 2).

    Google Scholar 

  31. Lübbe AS, Garrison RN, Cryer HM, Alsip NL, Harris PD (1992) EDRF as a possible mediator of sepsis-induced arteriolar dilation in skeletal muscle. Am J Physiol 262:H880–H887.

    PubMed  Google Scholar 

  32. Wright CE, Rees DD, Moncada S (1992) Protective and pathological role of nitric oxide in endotoxin shock. Cardiovasc Res 26:48–57.

    Article  PubMed  CAS  Google Scholar 

  33. Hollenberg SM, Cunnion RE, Parrillo JE (1992) Effect of septic serum on vascular smooth muscle: In vitro studies using rat aortic rings. Crit Care Med 20:993–998.

    Article  PubMed  CAS  Google Scholar 

  34. McKenna TM (1992) Recovery of vascular tissue contractile function during sustained endotoxin exposure. Am J Physiol 263:H1628–H1631.

    PubMed  CAS  Google Scholar 

  35. Baker CH, Sutton ET, Zhou Z, Dietz JR (1990) Microvascular vasopressin effects during endotoxin shock in the rat. Circ Shock 30:81–95.

    PubMed  CAS  Google Scholar 

  36. Balis JU, Rappaport ES, Gerber L, Fareed J, Buddingh F, Messmore HL (1978) A primate model for prolonged endotoxin shock. Blood-vascular reactions and effects of glucocorticoid treatment. Lab Invest 38:511–523.

    CAS  Google Scholar 

  37. McCuskey RS (1993) Hepatic microvascular responses to endotoxinemia and sepsis. Prog Appl Microcirc 19:76–84.

    Google Scholar 

  38. Vollmar B, Glasz J, Senkel A, Menger MD, Messmer K (1993) Role of leukocytes in the initial hepatic microvascular response to endotoxemia. Zentralbl Chir 118:691–696.

    PubMed  CAS  Google Scholar 

  39. Gutierrez G, Lund N, Palizas F (1991) Rabbit skeletal muscle PO2 during hypodynamic sepsis. Chest 99:224–229.

    Article  PubMed  CAS  Google Scholar 

  40. Sugino K, Dohi K, Yamada K, Kawasaki T (1987) The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101:746–752.

    PubMed  CAS  Google Scholar 

  41. Nolan JP (1981) Endotoxin, reticuloendothelial function, and liver injury. Hepatology 1:458–465.

    Article  PubMed  CAS  Google Scholar 

  42. Schaefer CF, Biber B, Lerner MR, Vliet J-V, Fagraeus L (1991) Rapid reduction of intestinal cytochrome a1a3 during lethal endotoxemia. J Surg Res 51:382–391.

    Article  PubMed  CAS  Google Scholar 

  43. Kawasaki K, Galla TJ, Lehr HA, Meßmer K (1990) Endotoxin verstärkt das Leukozy-tensticking in der Mikrozirkulation des postischämischen Skelettmuskels. Langenbecks Arch Chir Forum 90:29–32.

    Google Scholar 

  44. Snapper JR, Bernard GR, Hinson JM, Hutchinson AA, Loyd JE, Ogletree ML, Brigham KL (1983) Endotoxemia-induced leukopenia in sheep. Am Rev Respir Dis 127:306–309.

    PubMed  CAS  Google Scholar 

  45. Grisham MB, Everse J, Janssen HF (1988) Endotoxemia and neutrophil infiltration in vivo. Am J Physiol 254: H1017–H1022.

    PubMed  CAS  Google Scholar 

  46. Dahinden C, Galanos C, Fehr J (1983) Granulocyte activation by endotoxin I. J Immunol 130:857–862.

    PubMed  CAS  Google Scholar 

  47. Issekutz AC, Megyeri P, Issekutz TB (1987) Role for macrophage products in endotoxin-induced polymorphonuclear leukocyte accumulation during inflammation. Lab Invest 56:49–59.

    PubMed  CAS  Google Scholar 

  48. Wilson ME (1985) Effects of bacterial endotoxins on neutrophil function. Rev Infect Dis 7:404–418.

    Article  PubMed  CAS  Google Scholar 

  49. Meyrick BO (1986) Endotoxin-mediated pulmonary endothelial cell injury. Federation Proc 45:19–24.

    CAS  Google Scholar 

  50. Jaeschke H, Farhood A, Smith CW (1991) Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. Am J Physiol 261:G1051–G1056.

    PubMed  CAS  Google Scholar 

  51. Simms HH, D’Amico R (1991) Increased PMN CD11b/CD18 expression following posttraumatic ARDS. J Surg Res 50:362–367.

    Article  PubMed  CAS  Google Scholar 

  52. Windsor ACJ, Walsh CJ, Mullen PG et al (1993) Tumor necrosis factor-α blockade prevents neutrophil CD18 receptor upregulation and attenuates acute lung injury in porcine sepsis without inhibition of neutrophil oxygen radical generation. J Clin Invest 91:1459–1468.

    Article  PubMed  CAS  Google Scholar 

  53. Engelberts I, Samyo SK, Leuwenberg JFM, van der Linden C, Buurman WA (1992) A role of ELAM-1 in the pathogenesis of MOF during septic shock. J Surg Res 53:136–144.

    Article  PubMed  CAS  Google Scholar 

  54. Heflin AC, Brigham KL (1981) Prevention of granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia. J Clin Invest 68:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  55. Koike K, Moore FA, Moore EE, Poggetti RS, Tudre RM, Banerjee A (1992) Endotoxin after gut ischemia/reperfusion causes irreversible lung injury. J Surg Res 52:656–662.

    Article  PubMed  CAS  Google Scholar 

  56. Matsuda T, Rubinstein I, Robbins RA, Koyama S, Joyner WL, Rennard SI (1991) Role of neutrophils in endotoxin-mediated microvascular injury in hamsters. J Appl Physiol 71:307–313.

    PubMed  CAS  Google Scholar 

  57. Fantone JC, Ward PA (1982) Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am J Pathol 107:397–418.

    CAS  Google Scholar 

  58. Bautista AP, Spitzer JJ (1990) Superoxide anion generation by in situ perfused rat liver: effect of in vivo endotoxin. Am J Physiol 259: G907–G912.

    PubMed  CAS  Google Scholar 

  59. Mayer AMS, Spitzer JA (1991) Continuous infusion of escherichia coli endotoxin in vivo primes in vitro superoxide anion release in rat polymorphonuclear leukocytes and Kupffer cells in a time-dependent manner. Infect Immun 59:4590–4598.

    PubMed  CAS  Google Scholar 

  60. Mavier P, Preaux A-M, Guigui B, Lescs M-C, Zafrani E-S, Dhumeaux D (1988) In vitro toxicity of polymorphonuclear neutrophils to rat hepatocytes: evidence for a proteinase-mediated mechanism. Hepatology 8:254–258.

    Article  PubMed  CAS  Google Scholar 

  61. Hewett JA, Schultze E, VanCise S, Roth RA (1992) Neutrophil depletion protects against liver injury from bacterial endotoxin. Lab Invest 68:347–361.

    Google Scholar 

  62. Mallick AA, Ishizaka A, Stephens KE, Hatherill JR, Tazelaar HD, Raffin TA (1989) Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion. Chest 95:1114–1120.

    Article  PubMed  CAS  Google Scholar 

  63. Arredondo MI, Kampschmidt RF (1962) Effect of endotoxins on phagocytic activity of the reticuloendothelial system of the rat. PSEBM 112:78–81.

    Google Scholar 

  64. Pilaro AM, Laskin DL (1986) Accumulation of activated mononuclear phagocytes in the liver following lipopolysaccharides treatment of rats. J Leukoc Biol 40:29–41.

    PubMed  CAS  Google Scholar 

  65. Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192:245–261.

    Article  PubMed  CAS  Google Scholar 

  66. Monden K, Arn S, Itai S et al (1991) Enhancement and hepatocyte-modulating effect of chemical mediators and monokines produced by hepatic macrophages in rats with induced sepsis. Res Exp Med 191:177–187.

    Article  CAS  Google Scholar 

  67. Karck U, Peters T, Decker K (1988) The release of tumor necrosis factor from endo-toxin-stimulated rat Kupffer cells is regulated by prostaglandin E2 and dexamethasone. J Hepatol 7:352–361.

    Article  PubMed  CAS  Google Scholar 

  68. Dinarello CA (1984) Interleukin-1. Rev Infect Dis 6:51–95.

    Article  PubMed  CAS  Google Scholar 

  69. Callery MP, Mangino MJ, Kamei T, Flye MW (1990) Interleukin-6 production by endotoxin-stimulated Kupffer cells is regulated by prostaglandin E2. J Surg Res 48:523–527.

    Article  PubMed  CAS  Google Scholar 

  70. Assoian RK, Fleurdelys BE, Stevenson HC et al. (1987) Expression and secretion of type β transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 84:6020–6024.

    Article  PubMed  CAS  Google Scholar 

  71. Remick DG, Kunkel RG, Larrick JW, Kunkel SL (1987) Acute in vivo effects of human recombinant tumor necrosis factor. Lab Invest 56:583–590.

    PubMed  CAS  Google Scholar 

  72. Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA (1986) Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci USA 83:4533–4537.

    Article  PubMed  CAS  Google Scholar 

  73. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL (1991) Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol 260:C910–C916.

    PubMed  CAS  Google Scholar 

  74. Braquet P, Hosford D (1989) The potential role of platelet-activating factor (PAF) in shock, sepsis and adult respiratory distress syndrome (ARDS). Prog Clin Biol Res 308:425–439.

    PubMed  CAS  Google Scholar 

  75. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA (1987) Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci USA 84:9238–9242.

    Article  PubMed  CAS  Google Scholar 

  76. Pober JS, Gimbrone MA, Lapierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA (1986) Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 137:1893–1896.

    PubMed  CAS  Google Scholar 

  77. Drake WT, Issekutz AC (1993) Transforming growth factor-β1 enhances polymorphonuclear leukocyte accumulation in dermal inflammation and transendotheh’al migration by a priming action. Immunology 78:197–204.

    PubMed  CAS  Google Scholar 

  78. Reibman J, Meixler S, Lee TL et al (1991) Transforming growth factor β1, a potent chemoattractant for human neutrophils, bypasses classic signal-transduction pathway. Proc Natl Acad Sci USA 88:6805–6809.

    Article  PubMed  CAS  Google Scholar 

  79. Wiseman DM, Polverini PJ, Kamp DW, Leibovich SJ (1988) Transforming growth factor-beta (TGFβ) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Commun 157:793–800.

    Article  PubMed  CAS  Google Scholar 

  80. Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell: IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081–2095.

    CAS  Google Scholar 

  81. O’Garra A, Chang R, Hastings R, Go N, Haughton G, Howard M (1992) Ly1 B (B-1) cells are the main source of B-cell derived IL-10. Eur J Immunol 22:711–717.

    Article  PubMed  Google Scholar 

  82. de Waal Malefyt R, Abrams J, Bennett B, Figdor C, de Vries JE (1991) IL-10 inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220.

    Article  PubMed  Google Scholar 

  83. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:3815–3822.

    PubMed  CAS  Google Scholar 

  84. Howard M, Muchamuel T, Andrade S, Menon S (1993) Interleukin 10 protects mice from lethal endotoxemia. J Exp Med 177:1205–1208.

    Article  PubMed  CAS  Google Scholar 

  85. Ogletree ML, Oates JA, Brigham KL, Hubbard WC (1982) Evidence for pulmonary release of 5-hydroxyeicosatetraenoic acid (5-HETE) during endotoxemia in unanesthetized sheep. Prostaglandins 23:459–468.

    Article  PubMed  CAS  Google Scholar 

  86. Dahlen SE, Björk J, Hedqvist P, Arfors KE, Hammarström S, Lindgren JA, Samuelsson B (1981) Leukotriene promotes plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 78:3887–3891.

    Article  PubMed  CAS  Google Scholar 

  87. Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJH (1980) Leukotriene B4, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286:264–265.

    Article  PubMed  CAS  Google Scholar 

  88. Hua XY, Dahlen SE, Lundberg JM, Hammarström S, Hedqvist P (1985) Leukotrienes C4, D4, and E4 cause widespread and extensive plasma extravasation in the guinea pig. Naunyn-Schmiedebergs Arch Pharmacol 330:136–141.

    Article  PubMed  CAS  Google Scholar 

  89. Piper PJ (1984) Formation and action of leukotrienes. Physiol Rev 64:744–761.

    PubMed  CAS  Google Scholar 

  90. Bone RC (1992) Inhibitors of complement and neutrophils: a critical evaluation of their role in the treatment of sepsis. Crit Care Med 20:891–898.

    Article  PubMed  CAS  Google Scholar 

  91. Harkema JM, Chaudry IH (1992) Magnesium-adenosine triphosphate in the treatment of shock, ischemia and sepsis. Crit Care Med 20:263–275.

    Article  PubMed  CAS  Google Scholar 

  92. Alexander HR, Doherty GH, Buresh CM, Venzon DJ, Norton JA (1991) A recombinant human receptor antagonist to interleukin 1 improves survival after lethal endotoxemia in mice. J Exp Med 173:1029–1032.

    Article  PubMed  CAS  Google Scholar 

  93. Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871.

    Article  PubMed  CAS  Google Scholar 

  94. Kopaniak MM, Movat HZ (1983) Kinetics of acute inflammation induced by Escherichia coli in rabbits II. The effect of hyperimmunization, complement depletion, and depletion of leukocytes. Am J Pathol 110:13–29.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menger, M.D., Vollmar, B., Messmer, K. (1994). Sepsis and Nutritional Blood Flow. In: Reinhart, K., Eyrich, K., Sprung, C. (eds) Sepsis. Update in Intensive Care and Emergency Medicine, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85036-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85036-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85038-7

  • Online ISBN: 978-3-642-85036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics