Skip to main content

The Glacial Ocean: A Study with a Zonally Averaged, Three-Basin Ocean Circulation Model

  • Conference paper
Ice in the Climate System

Part of the book series: NATO ASI Series ((ASII,volume 12))

Abstract

A zonally averaged primitive equation model is developed to investigate the oceanic general circulation of the last glacial maximum. The Atlantic, Indian, and Pacific basins are separately resolved, and they are connected in the Southern Hemisphere by a circumpolar channel through which mass, heat, and salt are exchanged. The model circulation is driven, in addition to wind forcing, by restoring the sea-surface temperature and salinity to prescribed values. Under present-day boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70°N and in the vicinity of Antarctica, while the Indian and Pacific basins show broad upwelling. The simulated temperature and salinity fields and the computed meridional heat transport are in general agreement with the observational estimates. When glacial conditions for temperature and salinity are used to force the model, significant changes occur in the circulation patterns. Most of the deep Atlantic is filled with water originating from the model Southern Ocean. Deep-water production completely stops between 60 and 70°N in the Atlantic. However, the surface-water salinity around 50°N is sufficiently high to permit deep convection to a maximum depth of 2000 m, as a source of intermediate and deep waters. Open convection occuring between 30 and 40°N, contributes to the ventilation of these waters. In the North Pacific, the model simulates a weak intensification of the intermediate-water production. Another prominent feature is that the modelled global ocean deep-water temperature is about 2°C lower than for present-day boundary conditions. It is worth pointing that all these changes compare favourably with the existing geological reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyle, E.A., and L.D. Keigwin, 1987: North Atlantic thermohaline circulation during the last 20,000 years linked to high latitude surface temperature. Nature, 330, 35–40.

    Article  Google Scholar 

  • Broecker, W.S., 1987: Unpleasant surprise in the greenhouse? Nature, 328, 123–127.

    Article  Google Scholar 

  • Broecker, W.S., 1991: The great ocean conveyor. Oceanography, 4, 79–89.

    Google Scholar 

  • Bryan, K., 1969: A numerical method for the study of the circulation of the World Ocean. J. Comput. Phys., 4, 347–376.

    Article  Google Scholar 

  • Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean—climate models. J. Phys. Oceanogr., 14, 666–673.

    Article  Google Scholar 

  • Bryan, F., 1987: Parameter sensitivity of primitive equation ocean general circulation models. J. Phys. Oceanogr., 17, 970–985.

    Article  Google Scholar 

  • Carissimo, B.C., A.H. Oort, and T.H. Vonder Haar, 1985: Estimating the meridional energy transports in the atmosphere and ocean. J. Phys. Oceanogr., 15, 82–91.

    Article  Google Scholar 

  • Chappell,J., and N.J. Shackleton, 1986: Oxygen isotopes and sea level. Nature, 324, 137–140.

    Article  Google Scholar 

  • CLIMAP Project Members, 1981: Seasonal reconstruction of the earth’s surface at the last glacial maximum. Geol. Soc. Am. Map. Chart Serv., MC-36.

    Google Scholar 

  • Colin de Verdière, A., 1988: Buoyancy driven planetary flows. J. Mar. Res., 46, 215–265.

    Google Scholar 

  • Cox, M.D., 1984: A primitive equation, three-dimensional model of the ocean. GFDL Ocean Group Tech. Rep. No. 1, Geophys. Fluid Dyn. Lab./Natl. Oceanic Atmos. Admin., Princeton, 143 pp.

    Google Scholar 

  • Cox, M.D., 1989: An idealized model of the World Ocean. Part I: The global-scale water masses. J. Phys. Oceanogr., 19, 1730–1752.

    Article  Google Scholar 

  • Curry, W.B., J.-C. Duplessy, L.D. Labeyrie, and N.J. Shackleton, 1988: Changes in the distribution of 813C of deep water ECO2 between the last glaciation and the Holocene. Paleoceanography, 3, 317–341.

    Article  Google Scholar 

  • Duplessy, J.-C., J. Moyes, and C. Pujol, 1980: Deep water formation in the North Atlantic Ocean during the last ice age. Nature, 286, 476–482.

    Article  Google Scholar 

  • Duplessy, J.-C., N.J. Shackleton, R.G. Fairbanks, L.D. Labeyrie, D. Oppo, and N. Kallel, 1988: Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation, Paleoceanography, 3, 343–360.

    Article  Google Scholar 

  • Duplessy, J.-C., L.D. Labeyrie, A. Juillet-Leclerc, F. Maitre, J. Duprat, and M. Sarnthein, 1991: Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanologica Acta, 14, 311–324.

    Google Scholar 

  • England, M.H., 1992: On the formation of Antarctic Intermediate and Bottom Water in ocean general circulation models. J. Phys. Oceanogr., 22, 918–926.

    Article  Google Scholar 

  • Friedrich, H., and S. Levitus, 1972: An approximation equation of state for numerical models of ocean circulation. J. Phys. Oceanogr., 2, 514–517.

    Article  Google Scholar 

  • Gallée, H., J.-P. van Ypersele, Th. Fichefet, Ch. Tricot, and A. Berger, 1991: Simulation of the last glacial cycle by a coupled, sectorially averaged climate—ice sheet model. I. The climate model. J. Geophys. Res., 96, 13,139–13, 161.

    Google Scholar 

  • Gallée, H., J.-P. van Ypersele, Th. Fichefet, I. Marsiat, Ch. Tricot, and A. Berger, 1992: Simulation of the last glacial cycle by a coupled, sectorially averaged climate—ice sheet model. II. Response to insolation and CO2 variations. J. Geophys. Res., 97, 15,713–15, 740.

    Google Scholar 

  • Gordon, A.L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91, 5037–5046.

    Article  Google Scholar 

  • Harvey, L.D.D., 1992: A two-dimensional ocean model for long-term climatic simulations: Stability and coupling to atmospheric and sea ice models. J. Geophys. Res., 97, 9435–9453.

    Article  Google Scholar 

  • Hastenrath, S., 1982: On meridional heat transports in the World Ocean. J. Phys. Oceanogr., 12, 922–927.

    Article  Google Scholar 

  • Hellerman, S., and M. Rosenstein, 1983: Normal monthly wind stress over the World Ocean with error estimates. J. Phys. Oceanogr., 13, 1093–1104.

    Article  Google Scholar 

  • Océaniques. Progress Report 1992/3,Institut d’Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain, Louvain-la-Neuve, 26 pp.

    Google Scholar 

  • Hsiung, J., 1985: Estimates of global oceanic meridional heat transport. J. Phys. Oceanogr., 15, 1405–1413.

    Article  Google Scholar 

  • Johnson, D.A., M. Ledbetter, and L.H. Burckle, 1977: Vema Channel paleo-oceanography: Pleistocene dissolution cycles and episodic bottom water flow. Mar. Geol., 23, 1–33.

    Article  Google Scholar 

  • Killworth, P.D., 1983: Deep convection in the World Ocean. Rev. Geophys. and Space Phys., 21, 1–26.

    Article  Google Scholar 

  • Labeyrie, L.D., J.-C. Duplessy, and P.-L. Blanc, 1987: Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature, 327, 477–482.

    Article  Google Scholar 

  • Labeyrie, L.D., J.-C. Duplessy, J. Duprat, A. Juillet-Leclerc, J. Moyes, E. Michel, N. Kallel, and N.J. Shackleton, 1992: Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times. Quat. Sc. Rev., 11, 401–413.

    Article  Google Scholar 

  • Lautenschlager, M., and K. Herterich, 1990: Atmospheric response to ice age conditions: Climatology near the Earth’s surface. J. Geophys. Res., 95, 22,547–22, 557.

    Google Scholar 

  • Lautenschlager, M., and K. Herterich, 1990: Atmospheric response to ice age conditions: Climatology near the Earth’s surface. J. Geophys. Res., 95, 22,547–22, 557.

    Google Scholar 

  • Ledbetter, M.T., 1984: Bottom-current speed in the Vema Channel recorded by particle size of sediment fine-fraction. Mar. geol., 58, 137–149.

    Article  Google Scholar 

  • Levitus, S., 1982: Climatological Atlas of the World Ocean, NOAA Prof. Paper 13, U.S. Dept. of Commerce, Washington, DC, 173 pp.

    Google Scholar 

  • Maier-Reimer, E., and K. Hasselmann, 1987: Transport and storage of CO2 in the ocean–an inorganic ocean-circulation carbon cycle model. Climate Dynamics, 2, 63–90.

    Article  Google Scholar 

  • Marotzke, J., P. Welander, and J. Willebrand, 1988: Instability and multiple steady states in a meridional-plane model of the thermohaline circulation. Tellus, 40A, 162–172.

    Google Scholar 

  • Ruddiman, W.F., and A. McIntyre, 1977: Late Quaternary surface ocean kinematics and climatic change in the high-latitude North Atlantic. J. Geophys. Res., 82, 3877–3887.

    Article  Google Scholar 

  • Stocker, T.F., and D.G. Wright, 1991: Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes, Nature, 351, 729–732.

    Article  Google Scholar 

  • Stocker, T.F., D.G. Wright, and L.A. Mysak, 1992: A zonally averaged, coupled ocean—atmosphere model for paleoclimate studies, J. Climate, 5, 773–797.

    Article  Google Scholar 

  • Talley, L.D., 1984: Meridional heat transport in the Pacific Ocean. J. Phys. Oceanogr., 14, 231–241.

    Article  Google Scholar 

  • Warren, B.A., 1981: Deep circulation of the World Ocean. In Evolution of Physical Oceanography, Scientific Surveys in Honor of Henry Stommel, B.A. Warren and C. Wunsch, Eds., MIT Press, 6–41.

    Google Scholar 

  • Wright, D.G., and T.F. Stocker, 1991: A zonally averaged ocean model for the thermohaline circulation. Part I: Model development and flow dynamics. J. Phys. Oceanogr., 21, 1713–1724.

    Article  Google Scholar 

  • Wright, D.G., and T.F. Stocker, 1992: Sensitivities of a zonally averaged global ocean circulation model. J. Geophys. Res., 97, 12,707–12, 730.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fichefet, T., Hovine, S. (1993). The Glacial Ocean: A Study with a Zonally Averaged, Three-Basin Ocean Circulation Model. In: Peltier, W.R. (eds) Ice in the Climate System. NATO ASI Series, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85016-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85016-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85018-9

  • Online ISBN: 978-3-642-85016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics