Skip to main content

Simulation of the Climate of the Last 200 Kyr with the LLN 2D-Model

  • Conference paper
Ice in the Climate System

Part of the book series: NATO ASI Series ((ASII,volume 12))

Abstract

A sectorially averaged model of the northern hemisphere has been developed, taking into account the coupling between the atmosphere, the upper ocean, sea-ice, the ice sheets and the underlying bedrock. It has been used to simulate the last glacial-interglacial cycle (last 122 kyr) as a response to the insolation and CO2 forcings (Gallée et al., 1992). In this paper a simulation of the climate of the last 200 kyr is presented. For this simulation, both the insolation forcing and the CO2 variations reconstructed from deep sea cores are taken into account. Except for variations with time scales shorter than 5 kyr, the simulated long term variation of the total ice volume may be compared with that reconstructed from deep sea cores. For example, the model simulates glacial maxima of similar amplitudes at 134 kyr B.P. and 15 kyr B.P., followed by abrupt deglaciations. The complete deglaciation of the three main northern hemisphere ice sheets, which is simulated around 122 kyr B.P., is in partial disagreement with the reconstructions, which indicate that the Greenland ice sheet survived during the Eemian interglacial. The continental ice volume variations during the last 122 kyr of the 200 kyr simulation are not significantly affected by this shortcoming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnola, J.-M., Raynaud, Y., Korotkevich, Y.S., and Lorius, C., 1987. Vostok ice core provides 160,000-yr record of atmospheric CO2, Nature 329, 408–414.

    Article  Google Scholar 

  2. Berger, A., 1978. Long-term variations of daily insolation and Quaternary climatic changes, J. Atmos. Sci. 35, 2362–2367.

    Article  Google Scholar 

  3. Berger, A., 1988. Milankovitch theory and climate, Rev.of Geophys. 26, 624–657.

    Article  Google Scholar 

  4. Berger, A., Guiot, J., Kukla, G., and Pestiaux, P., 1981. Long term variations of monthly insolation as related to climate change, Geologischen Rundschau Bd. 70 (2), 748–758.

    Article  Google Scholar 

  5. Berger, A., and Loutre, M.-F., 1991. Insolation values for the climate of the last 10 million years, Quat.Sci.Rev. 10, 297–317.

    Article  Google Scholar 

  6. Birchfield, G.E., and J. Weertman, 1978. A note on the spectral response of a model continental ice sheet, J. Geophys. Res. 83, 4123–4125.

    Article  Google Scholar 

  7. Colbeck, S.C., 1983. Theory of metamorphism of dry snow, J.Geophys.Res. 88, 5475–5482.

    Article  Google Scholar 

  8. Duplessy, J.C1., Labeyrie, L., and Blanc, P.L., 1988. Norwegian sea deep water variations over the last climatic cycle: paleo-oceanographical implications, in Long and short term variability of climate, H. Wanner and U. Siegenthaler (eds), Earth Science Series, Springier Verlag, Berne, 83–116.

    Google Scholar 

  9. Edwards, R.L., Chen, J.H., Ku, T.-L., and Wasserburg, G.J., 1987. Precise timing of the last interglacial period from mass spectrometric determination of Thorium-230 in corals, Science 236, 1547–1553.

    Article  Google Scholar 

  10. Gallée, H., van Ypersele, J.P., Fichefet, Th., Tricot, Ch. and Berger, A., 1991. Simulation of the last glacial cycle by a coupled 2-D climate-ice sheet model. Part (1): The climate model. J.Geophys.Res. 96, 13139–13161.

    Article  Google Scholar 

  11. Gallée, H., van Ypersele, J.P., Marsiat, I., Fichefet, Th., Tricot, Ch. and Berger, A., 1992. Simulation of the last glacial cycle by a coupled 2-D climate-ice sheet model. Part (2): Response to Insolation and CO2 Variation. J.Geophys.Res. 97, 15713–15740.

    Google Scholar 

  12. Hays, J.D., Imbrie, J., and Shackleton, N.J., 1976. Variations in the Earth’s orbit: Pacemaker of the ices ages, Science 194, 1121–1132.

    Article  Google Scholar 

  13. Hughes, T.J., G.H. Denton, B.G. Anderson, D.H. Schiling, J.L. Fasthook, and C.S. Lingle, 1981. The last great ice sheets: a global view. in The last great ice sheets, G.H. Denton and T.J. Hughes, (eds), Wiley Interscience Publ., USA, 275–317.

    Google Scholar 

  14. Huybrechts, Ph., 1990. The Antarctic ice sheet during the last glacial-interglacial cycle: a 3-D model experiment, Ann. of Glaciol. 14, 115–119.

    Google Scholar 

  15. Imbrie, J., and Imbrie, J.Z., 1980. Modeling the climatic response to orbital variations, Science 207, 943–953.

    Article  Google Scholar 

  16. Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine PO record, in Milankovitch and Climate, Part I, A.L. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman, (eds), D. Reidel Publ. Company, Dordrecht, Holland, 269–305.

    Google Scholar 

  17. Jouzel, J., Lorius, C., Petit, J.R., Genthon, C., Barkov, N.I., Kotlyakov, V.M., and Petrov, V.M., 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years), Nature 329, 403–407.

    Article  Google Scholar 

  18. Labeyrie, L.D., Duplessy, J.C1., and Blanc, P.L., 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years, Nature 327, 477–482.

    Article  Google Scholar 

  19. Letréguilly, A., Reeh, N., and Huybrechts, P., 1991. The Greenland ice sheet through the last glacial-interglacial cycle, Palaeogeogr., Palaeoclimatol., Palaeoecol., ( Global Planet.Change Sect. ) 90, 385–394.

    Google Scholar 

  20. Lorius, C., Jouzel, J., Ritz, C., Merlivat, L., Barkov, N.I., Korotkevich, Y.S., and Kolyakov, V.M., 1985. A 150,000-year climatic record from Antarctic ice, Nature 316, 591–596.

    Article  Google Scholar 

  21. Marsiat, I., and A. Berger, 1990. On the relationship between ice volume and sea level over the last glacial cycle, Clim. Dyn. 4, 81–84.

    Article  Google Scholar 

  22. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year stratigraphy, Quat.Res. 27, 1–27.

    Article  Google Scholar 

  23. Milankovitch, M., 1941. Kanon der Erdbestrahlung, R. Serbian Acad. Spec. Publ. 132, Sect. Math. Nat. Sci. 33, 484 pp. (Canon of insolation and the ice-age problem, English translation by Israel Program for Scientific Translations, Jerusalem, 1969.)

    Google Scholar 

  24. Müller, H., 1974. Polleanalytische Untersuchungen und Jahresschichtenzählungen an der Eem-zeitlichen Kieselgure von Bispingen-Luhe. Geologische Jahrbuch A21, 149–169.

    Google Scholar 

  25. Neeman, B.U., G. Ohring, and J.H. Joseph, 1988. The Milankovitch theory and climate sensitivity, 2, Interaction between the northern hemisphere ice sheets and the climate system, J. Geophys. Res. 93, 11175–11191

    Article  Google Scholar 

  26. Oerlemans, J., 1980. Model experiments of the 100,000-yr glacial cycle, Nature 287, 430–432.

    Article  Google Scholar 

  27. Pollard, D., 1983b. A coupled climate-ice sheet model applied to the quaternary ice ages, J. Geophys. Res. 88, 7705–7718.

    Article  Google Scholar 

  28. Reeh, N., Oerter, H., Letréguilly, A., Miller, H., and Hubberten, H.W., 1991. A new detailled ice-age oxygen-18 record from the ice-sheet margin in central West Greenland, Palaeogeogr., Palaeoclimatol., Palaeoecol., ( Global Planet.Change Sect. ) 90, 373–383.

    Google Scholar 

  29. Shackleton, N.J., Le, J., Mix, A., and Hall, M.A., 1992., Carbon isotope records from Pacific surface waters and atmospheric carbon dioxide, Quat.Sci.Rev. 11, 387–400.

    Article  Google Scholar 

  30. Souchez, R., Lemmens, M., Lorrain, R., Tison, J.-L., Jouzel, J., and Sugden, D., 1990. Influence of hydroxil-bearing minerals on the composition of ice from the basal zone of an ice sheet, Nature 345, 244–246.

    Article  Google Scholar 

  31. Suarez, M.J., and I.M. Held, 1976. Modeling climatic response to orbital parameters variations, Nature 263, 46–47.

    Article  Google Scholar 

  32. Thomson, D.J., 1990. Quadratic-inverse spectrum estimates: applications to palaeoclimatology, Phil.Trans.R.Soc.London A 332, 539–597.

    Article  Google Scholar 

  33. Warren, S.G., 1982. Optical properties of snow, Rev. of Geophys. and Space Phys., 20 (1), 67–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gallée, H., Berger, A., Shackleton, N.J. (1993). Simulation of the Climate of the Last 200 Kyr with the LLN 2D-Model. In: Peltier, W.R. (eds) Ice in the Climate System. NATO ASI Series, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85016-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85016-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85018-9

  • Online ISBN: 978-3-642-85016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics