Skip to main content

Metabolic Responses to Anti-Cytokine Therapies

  • Chapter
Metabolic Support of the Critically Ill Patient

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

Abstract

Severe injury or invasive infection induce complex alterations of host metabolic and immunologic function. Although it is evident that these are dynamic processes serving as necessary adjuncts to the normal evolution of repair, their propagation may become severely dysfunctional in the setting of complicated injury or organ failure. Despite the clinical application of advanced technology for anti-microbial therapy, organ support, and nutrition, the mechanisms underlying the evolution of such adverse events have generally proven elusive. This discussion will selectively review current understanding of the potential role for inflammatory mediators as proximal determinants of the acute and chronic host metabolic responses to injury or infection. Where possible, observations derived from human systems will be utilized and, additionally, data suggesting the potential influence of anti-cytokine therapies upon these events will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowry SF (1986) The host metabolic response to injury. In: Shires GT, Davis JM (eds) Host defenses Vol. 6, Academic Press, pp. 169–180

    Google Scholar 

  2. Cerra FB (1987) Hypermetabolism, organ failure, and metabolic support. Surgery 101:1–14

    PubMed  CAS  Google Scholar 

  3. Fong Y, Moldawer LL, Shires GT, Lowry SF (1990) The biological characteristics of cytokines and their implication in surgical injury. Surg Gynecol Obstet 170:363–378

    PubMed  CAS  Google Scholar 

  4. Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115:457–469

    PubMed  CAS  Google Scholar 

  5. Bone RC (1991) A critical evaluation of new agents for the treatment of sepsis. JAMA 266:1686–1691

    Article  PubMed  CAS  Google Scholar 

  6. Lowry SF, VanZee KJ, Moldawer LL (1992) Strategies for modulation of systemic and tissue cytokine responses to sepsis. In: Lamy M, Thijs LG (eds) Update in Intensive Care and Emergency Medicine, Vol. 16. Mediators of Sepsis. Springer-Verlag, Berlin, Heidelberg, pp. 345–361

    Google Scholar 

  7. Lowry SF (1993) Hormone and cytokine regulation of injury metabolism. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine 1993, pp. 3–11

    Google Scholar 

  8. Calvano SE (1986) Hormonal mediation of immune dysfunction following thermal and traumatic injury. In: Davis JM, Shires GT (eds) Advances in host defense mechanisms. Raven Press, New York pp. 111–142

    Google Scholar 

  9. Lowry SF (1990) The route of feeding influences injury responses. J Trauma 30:510–515

    Google Scholar 

  10. Vassalli P (1992) The pathophysiology of tumor necrosis factors. In: Paul WE, Fathman CG, Metzger H (eds) Annual Review of Immunology, vol. 10. Annual Reviews Inc., Palo Alto pp. 411–452

    Google Scholar 

  11. Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion stimulates the metabolic response to injury. Ann Surg 200:264–281

    Article  PubMed  CAS  Google Scholar 

  12. Gelfand RA, Matthews DE, Bier DM, Sherwin RS (1984) Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest 74:2238–2248

    Article  PubMed  CAS  Google Scholar 

  13. Stoner HB, Frayn KN, Barton RN, Threlfall CJ, Little RA (1979) The relationships between plasma substrates and hormones and the severity of injury in 277 recently injured patients. Clin Sci 56:563–573

    PubMed  CAS  Google Scholar 

  14. Wilmore DW, Long JM, Mason AD, Skreen RW, Pruitt BA (1974) Catecholamines: Mediator of the hypermetabolic response to thermal injury. Ann Surg 180:653–668

    Article  PubMed  CAS  Google Scholar 

  15. Lowry SF (1992) Modulating the metabolic response to injury and infection. Proc Nutr Soc 51:267–277

    Article  PubMed  CAS  Google Scholar 

  16. Shaw JHF, Wolfe RR (1985) Alanine, urea, and glucose interrelationship in normal subjects and patients with sepsis with stable isotope tracers. Surgery 97:557–567

    PubMed  CAS  Google Scholar 

  17. Shaw JHF, Wildbore M, Wolfe RR (1987) Whole body protein kinetics in severely septic patients. Ann Surg 205:288–294

    Article  PubMed  CAS  Google Scholar 

  18. Shaw JHF, Wolfe RR (1987) Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. Ann Surg 205:368–376

    Article  PubMed  CAS  Google Scholar 

  19. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317:403–408

    Article  PubMed  CAS  Google Scholar 

  20. Shaw JHF, Wolfe RR (1989) An integrated analysis of glucose, fat, and protein metabolism in severely traumatized patients. Ann Surg 209:63–72

    Article  PubMed  CAS  Google Scholar 

  21. Jahoor F, Shangraw RE, Miyoshi H, Wallfish H, Herndon DN, Wolfe RR (1989) Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am J Physiol 257: E323–E331

    PubMed  CAS  Google Scholar 

  22. Fong Y, Albert JD, Tracey KJ, et al (1991) The influence of substrate background on the acute metabolic response to epinephrine and cortisol. J Trauma 31:1467–1476

    Article  PubMed  CAS  Google Scholar 

  23. Matthews DE, Pesola G, Campbell RG (1990) Effect of epinephrine on amino acid and energy metabolism in humans. Am J Physiol 258 : E948–E956

    PubMed  CAS  Google Scholar 

  24. Shaw JHF, Holdaway CM, Humberstone DA (1988) Metabolic intervention in surgical patients: The effect of a or β-blockade on glucose and protein metabolism in surgical patients receiving total parenteral nutrition. Surgery 103:520–525

    PubMed  CAS  Google Scholar 

  25. Kraenzlin ME, Keller U, Keller A, Thélin A, Arnaud MJ, Stauffacher W (1989) Elevation of plasma epinephrine concentrations inhibits proteolysis and leucine oxidation in man via β-adrenergic mechanisms. J Clin Invest 84:388–393

    Article  PubMed  CAS  Google Scholar 

  26. Beaufrere B, Horber FF, Schwenk WF, et al (1989) Glucocorticosteroids increase leucine oxidation and impair leucine balance in humans. Am J Physiol 257:E712–E721

    PubMed  CAS  Google Scholar 

  27. Lee MD, Zentella A, Pekala PH, Cerami A (1987) Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Proc Natl Acad Sci USA 84:2590–2594

    Article  PubMed  CAS  Google Scholar 

  28. Warren RS, Starnes HF Jr, Gabrilove JL, Oettgen HF, Brennan MF (1987) The acute metabolic effects of tumor necrosis factor administration in humans. Arch Surg 122:1396–1400

    Article  PubMed  CAS  Google Scholar 

  29. Starnes HF, Warren RA, Jeevanandam M, et al (1988) Tumor necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 82:1321–1325

    Article  PubMed  CAS  Google Scholar 

  30. Tracey KJ, Fong Y, Hess D, et al (1988) Cachectin (tumor necrosis factora, TNF-α) participates in the metabolic derangements induced by gram-negative bacteremia. Surg Forum 39:8–10

    CAS  Google Scholar 

  31. Tracey KJ, Lowry SF (1989) The role of cytokines in septic shock. In: Tompkins RK (ed) Advances in surgery. Yearbook Medical Publishers, Chicago pp. 21–56

    Google Scholar 

  32. Moldawer LL, Lowry SF, Cerami A (1988) Chachectin: Its impact on metabolism and nutritional status. Ann Rev Nutr 8:585–609

    Article  CAS  Google Scholar 

  33. Klasing KC (1988) Nutritional aspects of leukocytic cytokines. J Nutr 118:1436–1446

    PubMed  CAS  Google Scholar 

  34. van der Poll T, Romijn JA, Endert E, Born JJJ, Büller HR, Sauerwein HP (1991) Tumor necrosis factor mimics the metabolic response to acute infection in healthy humans. Am J Physiol 261: E457–E465

    PubMed  Google Scholar 

  35. Fong Y, Marano MA, Moldawer LL, et al (1990) The acute splanchnic and peripheral tissue metabolic response to endotoxin in man. J Clin Invest 85:1896–1904

    Article  PubMed  CAS  Google Scholar 

  36. Tracey KJ, Lowry SF, Fahey TJ, et al (1987) Cachectin/tumor necrosis factor induces lethal septic shock and stress hormone responses in the dog. Surg Gynecol Obstet 164:415–422

    PubMed  CAS  Google Scholar 

  37. Evans DA, Jacobs DO, Revhaug A, Wilmore DW (1989) The effects of tumor necrosis factor and their selective inhibition by ibuprofen. Ann Surg 209:312–321

    Article  PubMed  CAS  Google Scholar 

  38. Rock CS, Coyle SM, Keogh CV, et al (1992) Influence of hypercortisolemia on the acute phase protein response to endotoxin in man. Surgery 112:467–474

    PubMed  CAS  Google Scholar 

  39. Barber AE, Coyle SM, Marano MA, et al (1993) Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J Immunol 150:1999–2006

    PubMed  CAS  Google Scholar 

  40. Fischer E, Marano MA, Barber A, et al (1991) Interleukin-1α administration can replicate the hemodynamic and metabolic responses to sublethal endotoxemia. Am J Physiol 261: R442–R452

    PubMed  CAS  Google Scholar 

  41. Fischer E, Marano MA, Van Zee KJ, et al (1992) Interleukin-1 receptor blockade improves survival and hemodynamic performance in E. coli septic shock, but fails to alter host responses to sublethal endotoxemia. J Clin Invest 89:1551–1557

    Article  PubMed  CAS  Google Scholar 

  42. Rhyne CD, Calvano SE, Richardson RP, et al (1987) Functional immune consequences following in vivo lipopolysaccharide (LPS) administration to normal human subjects are secondary to an alteration of antigen presenting cells. Surg Forum 38:96–98

    Google Scholar 

  43. Richardson RP, Rhyne CD, Fong Y, et al (1989) Peripheral blood leukocyte kinetics following in vivo lipopolysaccharide (LPS) administration to normal human subjects: Influence of elicited hormones and cytokines. Ann Surg 210:239–245

    Article  PubMed  CAS  Google Scholar 

  44. Fischer E, Van Zee KJ, Marano MA, et al (1992) Interleukin-1 receptor antagonist circulates in experimental inflammation and in human disease. Blood 79:2196–2200

    PubMed  CAS  Google Scholar 

  45. VanZee KJ, Kohno T, Fischer E, Rock CS, Moldawer LL, Lowry SF (1992) Tumor necrosis factor (TNF) soluble receptors circulate during experimental and clinical inflammation and can protect against excessive TNFa in vitro and in vivo. Proc Natl Acad Sci 89:4845–4849

    Article  CAS  Google Scholar 

  46. Schattner A, Steinbock M, Tepper R, Schonfeld A, Vaisman N, Hahn T (1990) Tumour necrosis factor production and cell-mediated immunity in anorexia nervosa. Clin Exp Immunol 79:62–66

    Article  PubMed  CAS  Google Scholar 

  47. Luger A, Graf H, Schwarz H-P, Stummvoll H-K, Luger TA (1986) Decreased serum interleukin 1 activity and monocyte interleukin 1 production in patients with fatal sepsis. Crit Care Med 14:458–461

    Article  PubMed  CAS  Google Scholar 

  48. Oliff A, Defeo-Jones D, Boyer M, et al (1987) Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50:555–563

    Article  PubMed  CAS  Google Scholar 

  49. Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330:662–664

    Article  PubMed  CAS  Google Scholar 

  50. Ziegler EJ, Fisher CJ Jr, Sprung CL, et al (1991) Treatment of gram-negative bacteremia and septic shock with HA-IA monoclonal antibody endotoxin: A randomized, double-blind, placebo-controlled trial. N Engl J Med 324:429–436

    Article  PubMed  CAS  Google Scholar 

  51. Munoz C, Carlet J, Fitting C, Misset B, Blériot J-P, Cavaillon J-M (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88:1747–1754

    Article  PubMed  CAS  Google Scholar 

  52. Herndon DN, Stein MD, Rutan TC, Abston S, Linares H (1987) Failure of TPN supplementation to improve liver function, immunity, and mortality in thermally injured patients. J Trauma 27:195–204

    Article  PubMed  CAS  Google Scholar 

  53. Fong Y, Tracy KJ, Moldawer LL, et al (1989) Antibodies to cachectin/TNF reduce interleukin-1β and interleukin-6 appearance during lethal bacteremia. J Exp Med 170:1627–1633

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lowry, S.F. (1993). Metabolic Responses to Anti-Cytokine Therapies. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics