Skip to main content

Metabolic Support: Modulation of Purine Metabolism

  • Chapter
Metabolic Support of the Critically Ill Patient

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

  • 58 Accesses

Abstract

As the major substrate of energy-consuming reactions, ATP plays a key role in cell metabolism. Hypoxia and ischemia impair the mitochondrial process of oxidative phosphorylation, resulting in a net catabolism of ATP. A primary goal of metabolic support should thus be the preservation of cellular ATP levels. One possible strategy is the enhancement of natural homeostatic mechanisms designed to decrease energy demand and to increase energy supply. At least 3 of these mechanisms involve purines themselves. The drop in cell ATP and the accompanying rise in ADP result in the allosteric activation of phosphofructokinase, a key enzyme in the glycolytic pathway, which under hypoxia, provides an alternative to oxidative phosphorylation as a source of ATP. This reciprocal change also induces the opening of a particular set of K + channels, resulting in hyperpolarization and decreased activity of excitable cells. AMP, which accumulates inside hypoxic cells, activates a specific AMP-dependent protein kinase which inhibits key enzymes in the biosynthesis of fatty acids and cholesterol. Finally, ATP catabolism leads to the accumulation of adenosine in the interstitial fluid. Activation of A1 adenosine receptors reduces the O2 demand of neurons and cardiomyocytes, whereas O2 supply is increased via the activation of vascular A2 adenosine receptors. Several pharmacological tools are becoming available to enhance these physiological mechanisms of protection: K+ channels openers, adenosine analogues, blockers of adenosine uptake, inhibitors of adenosine deaminase and allosteric enhancers of adenosine receptors. A number of animal studies indicate that these agents may indeed exert a cardio- and neuroprotective action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skladanowski AC, Newby AC (1990) Partial purification and properties of an AMP- specific soluble 5′-nucleotidase from pigeon heart. Biochem J 268:117–122

    PubMed  CAS  Google Scholar 

  2. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  PubMed  CAS  Google Scholar 

  3. Escandre D, Cavero I (1992) K+ channels openers and “natural” cardioprotection. TIPS 13:269–271

    Google Scholar 

  4. Hardie DG, Carling D, Sim ATR (1989) The AMP-activated protein kinase: A multisubstrate regulator of lipid metabolism. TIBS 14:20–23

    CAS  Google Scholar 

  5. Sneddon P, Westfall DP (1984) Pharmacological evidence that adenosine triphosphate and noradrenaline are cotransmitters in the guinea-pig vas deferens. J Physiol 347:561–580

    PubMed  CAS  Google Scholar 

  6. Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  PubMed  CAS  Google Scholar 

  7. Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503–505

    Article  PubMed  CAS  Google Scholar 

  8. Boeynaems JM, Pearson JD (1990) P2 purinoceptors on vascular endothelial cells: Physiological significance and transduction mechanisms. TIPS 11:34–37

    PubMed  CAS  Google Scholar 

  9. Pearson JD, Gordon JL (1979) Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature 281:384–386

    Article  PubMed  CAS  Google Scholar 

  10. Schütz W, Schrader J, Gerlach E (1991) Different sites of adenosine formation in the heart. Am J Physiol 240:H963–H970

    Google Scholar 

  11. Van Belle H, Goossens F, Wynants J (1987) Formation and release of purine catabol- ites during hypoperfusion, anoxia, and ischemia. Am J Physiol 252:H886–H893

    PubMed  Google Scholar 

  12. Van Wylen DGL, Willis J, Sodhi J, Weiss RJ, Lasley RD, Mentzer RM (1990) Cardiac microdialysis to estimate interstitial adenosine and coronary blood flow. Am J Physiol 258: H1642–H1649

    PubMed  Google Scholar 

  13. Phillis JW, Walter GA, Simpson RE (1991) Purine release from the hypoxic/ischemic rat cerebral cortex: Manipulation of adenosine levels. In: Imai S, Nakazawa M (eds) Role of adenosine and adenine nucleotides in the biological system. Elsevier Science Publishers, pp. 661–671

    Google Scholar 

  14. Möser GH, Schrader J, Deussen A (1989) Turnover of adenosine in plasma of human and dog blood. Am J Physiol 256: C799–C806

    PubMed  Google Scholar 

  15. Feldman MD, Ayers CR, Lehman MR, et al (1992) Improved detection of ischemia- induced increases in coronary sinus adenosine in patients with coronary artery disease. Clin Chem 38:256–262

    PubMed  CAS  Google Scholar 

  16. Libert F, Schiffman S, Lefort A, et al (1991) The orphan receptor cDNA RCD7 encodes an A1 adenosine receptor. EMBO J 10:1677–1682

    PubMed  CAS  Google Scholar 

  17. Maenhaut C, Van Sande J, Libert F, et al (1990) RCD8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun 173:1169–1178

    Article  PubMed  CAS  Google Scholar 

  18. Piece KD, Furlong TJ, Selbie LA, Shine J (1992) Molecular cloning and expression of an adenosine A2b receptor from human brain. Biochem Biophys Res Commun 187:86–93

    Article  Google Scholar 

  19. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: The A3 adenosine receptor. Proc Natl Acad Sci USA 89:7432–7436

    Article  PubMed  CAS  Google Scholar 

  20. Stiles GL (1992) Adenosine receptors. J Biol Chem 267:6451–6454

    PubMed  CAS  Google Scholar 

  21. Martinson EA, Johnson RA, Wells JN (1987) Potent adenosine receptor antagonists that are selective for the A1 receptor subtype. Mol Pharmacol 131:247–252

    Google Scholar 

  22. Berne RM (1964) Regulation of coronary blood flow. Physiol Rev 44:1–29

    PubMed  CAS  Google Scholar 

  23. Bruns RF (1991) Role of adenosine in energy supply/demand balance. Nuclesides and Nucleotides 10:931–943

    Article  CAS  Google Scholar 

  24. Stephens JC, Artz SW, Ames BN (1975) ppGpp: Positive effector for histidine operon transcription and general signal for amino acid deficiency. Proc Natl Acad Sci USA 72:4389–4393

    Article  PubMed  CAS  Google Scholar 

  25. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Günther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344

    Article  PubMed  CAS  Google Scholar 

  26. Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K+ channels to Al receptors by G proteins in rat ventricular myocytes. Am J Physiol 259:H820–H826

    PubMed  CAS  Google Scholar 

  27. Grover GJ, Newburger J, Sleph PG, et al (1991) Cardioprotective effects of the potassium channel opener cromakalin: Stereoselectivity and effects of myocardial adenine nucleotides. J Pharmacol Exp Therapeutics 257:156–162

    CAS  Google Scholar 

  28. Auchampach JA, Maruyama M, Cavero I, Gross GJ (1991) The new K+ channel opener aprikalim (RP 52891) reduces experimental infarcts size in dogs in the absence of hemodynamic changes. J Pharmacol Exp Therapeutics 259:961–967

    CAS  Google Scholar 

  29. Mentzer RM, Lasley RD, Van Wylen DGL (1991) A new role for adenosine: Modulation of myocardial tolerance to ischemia. In: Imai S, Nakazawa M (eds) Adenosine and adenine nucleotides in the biological system. Elsevier Science Publishers, pp. 547–556

    Google Scholar 

  30. Lasley R, Mentzer RM (1992) Adenosine improves recovery postischemic myocardial function via an adenosine A1 receptor mechanism. Am J Physiol 263:H1460–H1465

    PubMed  CAS  Google Scholar 

  31. Mainwaring R, Lasley R, Rubio R, Wyatt DA, Mentzer RM (1988) Adenosine stimulates glucose uptake in the isolated rat heart. Surgery 103:445–149

    PubMed  CAS  Google Scholar 

  32. Wyatt DA, Edmunds MC, Rubio R, Berne RM, Lasley RD, Mentzer RM (1989) Adenosine stimulates glycolytic flux in isolated perfused rat hearts by A1-adenosine receptors. Am J Physiol 257:H1952–H1957

    PubMed  CAS  Google Scholar 

  33. Klenow H, Ostergaard E (1988) Adenosine induction of rapid catabolism of adenine ribonucleotides and independent elevation of the ATP content in quiescent mouse fibroblasts. J Cell Physiol 137:565–570

    Article  PubMed  CAS  Google Scholar 

  34. Evans MC, Swan JH, Meldrum BS (1987) An adenosine analogue, 2-chloroadenosine, protects against long-term development of ischaemic cell loss in the rat hippocampus. Neuroscience (Lett) 83:287–292

    Article  CAS  Google Scholar 

  35. von Lubitz DKEJ, Dambrosia JM, Redmond DJ (1989) Protective effect of cytohexyl adenosine in treatment of cerebral ischemia in gerbils. Neuroscience 30:451–462

    Article  Google Scholar 

  36. Dolphin AC, Archer ER (1983) An adenosine agonist inhibit and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neuroscience (Lett) 43:49–54

    Article  CAS  Google Scholar 

  37. Corradetti R, Lo Conte G, Moroni F, Passani MB, Pepeu G (1984) Adenosine decreases asparate and glutamate release from rat hippocampal slices. Eur J Pharmacol 104:19–26

    Article  PubMed  CAS  Google Scholar 

  38. Arvin B, Neville LF, Pan J, Roberts PJ (1989) 2-chloroadenosine attenuates kainic acid-induced toxicity within the rat striatum: Relationship to release of glutamate and Ca2+ influx. Br J Pharmacol 98:225–235

    PubMed  CAS  Google Scholar 

  39. Jacobson KA, Trivedi BK, Churchill PC, Williams M (1991) Novel therapeutics acting via purine receptors. Biochem Pharmacol 41:1399–1410

    Article  PubMed  CAS  Google Scholar 

  40. Van Belle H (1988) In vivo effects of inhibitors of adenosine uptake. In: Paton D (ed) Adenosine and adenine nucleotides: Physiology and pharmacology. Taylor and Francis, pp. 251–258

    Google Scholar 

  41. Marzilli M, Simonetti I, Levantesi D, et al (1984) Effects of dilazep on coronary and systemic hemodynamics in humans. Am Heart J 108:276–285

    Article  PubMed  CAS  Google Scholar 

  42. Waugier A, Van Belle H, Van der Broeck WAE, Janssen PAJ (1987) Sleep improvement in dogs after oral administration of mioflazine, a nucleoside transport inhibitor. Psychopharmacology 91:434–440

    Article  Google Scholar 

  43. Stromski ME, van Waarde A, Avison MJ, et al (1988) Metabolic and functional conse- quences of inhibiting adenosine deaminase during renal ischemia in rats. J Clin Invest 82:1694–1699

    Article  PubMed  CAS  Google Scholar 

  44. Henrichs KJ, Matsuoka H, Schaper W (1988) Enhanced postischemic ATP repletion by pharmacological inhibition of nucleoside washout and catabolism. J Cardiovascular Pharmacol 11:694–700

    Article  CAS  Google Scholar 

  45. Bruns RF, Fergus JH (1990) Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes. Mol Pharmacol 38:939–949

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boeynaems, J.M. (1993). Metabolic Support: Modulation of Purine Metabolism. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics