Skip to main content

Effects of Enteral Nutrients on the Critically Ill Gut

  • Chapter
Metabolic Support of the Critically Ill Patient

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

Abstract

Traditional teachings state that the gut is quiescent in the critically ill patient. These teachings, however, are undergoing rigorous scientific scrutiny. It is now known that the gut is both physiologically and metabolically active despite the presence of critical illness. Moreover, recent investigations have shown that enteral nutrients, and in some instances the provision of entero- cyte and colonocyte fuels, enhance structure and function of the intestine during stress and disease. This chapter reviews the structure and function of the normal intestinal epithelium and the adverse effects of critical illness on the gut. In addition, the role of enteral nutrients in preventing and treating these adverse effects is discussed. This information in part has been reviewed in a previous report from our laboratory (Lew JI and Rombeau JL, unpublished data).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson LR (1987) Regulation of gastrointestinal growth. In: Johnson LR (ed) Physiology of the gastrointestinal tract. 2nd edn. Raven Press, New York, pp 301–333

    Google Scholar 

  2. Lipkin M (1987) Proliferation and differentiation of normal and diseased gastrointestinal cells. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 2nd edn., Raven Press, New York, pp 255–284

    Google Scholar 

  3. Madara JL, Tries JS (1987) Functional morphology bf the mucosa of the small intestine. In: Johnson LR (ed) Physiology of the gastrointestinal tract. 2nd edn., Raven Press, New York, pp 1209–1249

    Google Scholar 

  4. Shamsuddin AM, Phelps PC, Trump BF (1982) Human large intestinal epithelium: Light microscopy, biochemistry, and ultrastructure. Hum Path 13:790–803

    Article  PubMed  CAS  Google Scholar 

  5. Colony PC (1989) The identification of cell types in the normal adult colon. In: Augenlicht LH (ed) Cell and molecular biology of colon cancer, CRC Press Inc., Boca Raton, Florida, pp 2–21

    Google Scholar 

  6. Wilmore DW, Smith RJ, O’Dwyer ST, Jacobs DO, Ziegler TR, Wang XD (1988) The gut: A central organ after surgical stress. Surgery 104:917–923

    PubMed  CAS  Google Scholar 

  7. Rijike RPC, Plaisier HM, DeRuiter H, Galjaard H (1977) Influence of experimental bypass on cellular kinetics and maturation of small intestinal epithelium in the rat. Gastroenterology 72:896–901

    Google Scholar 

  8. Cameron IL, Ord VA, Hunter KE, Van Nguyen M, Padilla GM, Heitman DW (1990) Quantitative contribution of factors regulating rat colonic crypt epithelium: Role of parenteral and enteral feeding, caloric intake, dietary cellulose level and the colon carcinogen DMH. Cell Tissue Kinet 23:227–235

    PubMed  CAS  Google Scholar 

  9. Cummings JH, Branch WJ (1986) Fermentation and the production of short chain fatty acids in the human large intestine. In: Vahouny GV, Kritchevsky D (eds) Basic and medical aspects of dietary fiber, Plenum Press, New York, pp 131–149

    Google Scholar 

  10. Cummings JH (1984) Colonic absorption: The importance of short chain fatty acids in man. Scand J Gastroenterol 19:90–99

    Google Scholar 

  11. Vahouny GV (1987) Effects of dietary fiber on digestion and absorption. In: Johnson LR (ed) Physiology of the gastrointestinal tract. 2nd edn. Raven Press, New York, pp 1623–1648

    Google Scholar 

  12. Vahouny GV, Cassidy MM (1986) Dietary fiber and intestinal adaptation. In: Vahouny GV, Kritchevsky D (eds) Basic and medical aspects of dietary fiber. Plenum Press, New York, pp 181–209

    Google Scholar 

  13. Jacobs LR (1989) Dietary fiber and the intestinal mucosa. In: Cummings JH (ed) The role of dietary fiber in enteral nutrition, Abbott International, Abbott Park, Illinois, pp 24–35

    Google Scholar 

  14. Bristol JB, Williamson CN (1984) Large bowel growth. Scand J Gastroent 19:25–34

    Google Scholar 

  15. Sakata T (1987) Stimulatory effect of short chain fatty acids on epithelial cell proliferation in the rat intestine: A possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 58: 95–103

    Article  PubMed  CAS  Google Scholar 

  16. Dembinski AB, Johnson LR (1979) Growth of pancreas and gastrointestinal mucosa in antrectoma and gastrin treated rats. Endocrinology 105:769–773

    Article  PubMed  CAS  Google Scholar 

  17. Sirinek KR, Levine BA, Moyer MP (1985) Pentagastrin stimulates in vitro growth of normal and malignant human colon epithelial cells. Am J Surg 149:35–39

    Article  PubMed  CAS  Google Scholar 

  18. Johnson LR (1979) Regulation of gastrointestinal mucosal growth. J Surg 3:477–487

    CAS  Google Scholar 

  19. Ryberg B, Axelson J, Hakanson R, Sundler F, Mattsson H (1990) Trophic effects of continuous infusion of [Leul5]-gastrin-17 in the rat. Gastroenterology 98:33–38

    PubMed  CAS  Google Scholar 

  20. Goodlad RA, Al Mukhtar MYT, Ghatei MA, Bloom SR, Wright NA (1983) Cell proliferation plasma enteroglucagon and plasma gastrin levels in starved and refed rats. Virchows Arch Cell Pathol 43:55–62

    Article  CAS  Google Scholar 

  21. Gleeson MM, Bloom SR, Polak JK, et al (1971) Endocrine tumor in kidney affecting small bowel structure, mobility and absorptive function. Gut 122:773–782

    Article  Google Scholar 

  22. Kvietys PR, Granger ND (1981) Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 80:962–969

    PubMed  CAS  Google Scholar 

  23. Demigné C, Remesy C (1985) Stimulation of absorption of volatile fatty acids and minerals in the cecum of rats adapted to a very high fiber diet. J Nutr 115:53–60

    PubMed  Google Scholar 

  24. Cummings JH, Pomare EW, Branch WJ, Naylor CPE, MacFarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  PubMed  CAS  Google Scholar 

  25. Sakata T (1986) Effects of indigestible dietary fibre bulk and short-chain fatty acids on tissue and weight and epithelial proliferation rate of the digestive tract in rats. J Nutr Sci Vitaminol 32:355–362

    Article  PubMed  CAS  Google Scholar 

  26. Mortensen FV, Nielsen H, Mulvany MJ, Hessov I (1990) Short chain fatty acids dilate isolated human colonic resistance arteries. Gut 31:1391–1394

    Article  PubMed  CAS  Google Scholar 

  27. Karlstad MD, Killeffer JA, Bailey JW, DeMichele SJ (1992) Parenteral nutrition with short-and long-chain triglycerides: Triacetin reduces atrophy of small and large bowel mucosa and improves protein metabolism in burned rats. Am J Clin Nutr 55: 1005–1011

    PubMed  CAS  Google Scholar 

  28. Tutton PJM, Helme RD (1974) The influence of adrenoceptor activity on crypt cell proliferation in the rat jejunum. Cell Tissue Kinet 7:125–136

    PubMed  CAS  Google Scholar 

  29. Thomas EM, Templeton D (1981) Noradrenergic innervation of the villi of rat jejunum. J Auton Nerv Syst 3:25–29

    Article  PubMed  CAS  Google Scholar 

  30. Jacobowitz D (1965) Histochemical studies of the autonomic innervation of the gut. J Pharmacol Exp Ther 149:358–364

    PubMed  CAS  Google Scholar 

  31. Newson B, Ahlman H, Dahlström A, Das Gupta TK, Nyhus LM (1979) On the innervation of the ileal mucosa in the rat - a synapse. Acta Physiol Scand 105:387–389

    Article  PubMed  CAS  Google Scholar 

  32. Frankel WL, Zhang W, Singh A, et al (1992) Stimulation of autonomic nervous system mediates SCFA induced jejunal trophism. Surgical Forum 43:24–26

    Google Scholar 

  33. Saadia R, Schein M, MacFarlane C, Boffard KD (1990) Gut barrier function and the surgeon. Br J Surg 77:487–492

    Article  PubMed  CAS  Google Scholar 

  34. Jones WG, Minei JP, Barber AE, Fahey TJ, Shires III GT, Shires GT (1991) Splanchnic vasoconstriction and bacterial translocation after thermal injury. Am J Physio 261 :H1190–H1196

    Google Scholar 

  35. Deitch EA (1990) Bacterial translocation of the gut flora. J Trauma 30:S184–S189

    Article  PubMed  CAS  Google Scholar 

  36. Hong RW, Rounds JD, Helton WS, Robinson MK, Wilmore DW (1992) Glutamine preserves liver glutathione after lethal hepatic injury. Ann Surg 215:114–119

    Article  PubMed  CAS  Google Scholar 

  37. Robinson MK, Rounds JD, Hong RW, Jacobs DO, Wilmore DW (1992) Glutathione deficiency increases organ dysfunction after hemorrhagic shock. Surgery 112:140–149

    PubMed  CAS  Google Scholar 

  38. Berg RD (1983) Translocation of indigenous bacteria from the intestinal tract lumen. In: Hentges DJ (ed) Intestinal microflora in health and disease, Academic Press, New York, pp 333–352

    Google Scholar 

  39. Hammer-Hodges D, Woodruff P, Cuevas P, Kaufmann A, Fine J (1974) Role of intraintestinal gram-negative bacterial flora in response to major injury. Surg Gynecol Obstet 138:599–603

    PubMed  CAS  Google Scholar 

  40. Deitch EA, Berg R, Specian R (1987) Endotoxin promotes the translocation of bacteria from the gut. Arch Surg 122:185–190

    Article  PubMed  CAS  Google Scholar 

  41. Rush BF, Sori AJ, Murphy TF, Smith S, Flanagan JJ, Machiedo GW (1988) Endotox- emia and bacteremia during hemorrhagic shock: The link between trauma and sepsis? Ann Surg 207:549–554

    Article  PubMed  Google Scholar 

  42. Deitch EA (1992) Multiple organ failure: Pathophysiology and potential future therapy. Ann Surg 216:117–134

    Article  PubMed  CAS  Google Scholar 

  43. Goris RJA, Boekholtz WKF, van Bebber IPT, Nuytinck JKS, Schillings PHM (1986) Multiple organ failure and sepsis without bacteria: An experimental model. Arch Surg 121:897–901

    Article  PubMed  CAS  Google Scholar 

  44. Border JR (1992) Multiple systems organ failure. Ann Surg 216:111–116

    Article  PubMed  CAS  Google Scholar 

  45. Zhi-Yong S, Yuan-Lin D, Xiao-Hong W (1992) Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion. J Trauma 32:148–153

    Article  PubMed  CAS  Google Scholar 

  46. Rolandelli RH, Rombeau JL (1989) Enteral nutrition in critically ill patients. Perspectives in Critical Care 2:1–16

    Google Scholar 

  47. Ryan JA (1983) Jejunal feeding. In: Fischer JE (ed) Surgical Nutrition, 1st edn. Little, Brown and Company, Boston, pp 757–777

    Google Scholar 

  48. Muggia-Sullam M, Bower RH, Murphy RF, Joffe SN, Fischer JE (1985) Postoperative enteral versus parenteral nutritional support in gastrointestinal surgery. Am J Surg 149:106–112

    Article  PubMed  CAS  Google Scholar 

  49. Lowry SF (1990) The route of feeding influences injury responses. J Trauma 30:S10 S15

    Article  PubMed  CAS  Google Scholar 

  50. Fong Y, Marano MA, Barber A, et al (1989) Total parenteral nutrition and bowel rest modify the metabolic response to endotoxin in humans. Ann Surg 210:449–457

    Article  PubMed  CAS  Google Scholar 

  51. Border JR, Hassett J, LaDuca J, et al (1987) The gut origin septic states in blunt multiple trauma (ISS=40) in the ICU. Ann Surg 206:427–448

    Article  PubMed  CAS  Google Scholar 

  52. Moore FA, Moore EE, Jones TN, McCroskey BL, Peterson VM (1989) TEN versus TPN following major abdominal trauma-reduced septic morbidity. J Trauma 29:916–923

    Article  PubMed  CAS  Google Scholar 

  53. Kudsk KA, Croce MA, Fabian TC, et al (1992) Enteral versus parenteral feeding. Ann Surg 215:503–513

    Article  PubMed  CAS  Google Scholar 

  54. Windmueller HG (1982) Glutamine utilization by the small intestine. Adv Enzymol 53:201–237

    PubMed  CAS  Google Scholar 

  55. Souba WW, Herskowitz K, Austgen TR, Chen MK, Salloum RM (1990) Glutamine nutrition: Theoretical considerations and therapeutic impact. JPEN 14:237S-243S

    Article  CAS  Google Scholar 

  56. McAnena OJ, Moore FA, Moore EE, Jones TN, Parsons P (1991) Selective uptake of glutamine in the gastrointestinal tract: Confirmation in a human study. Br J Surg 78:480–482

    Article  PubMed  CAS  Google Scholar 

  57. Herskowitz K, Souba WW (1990) Intestinal glutamine metabolism during critical illness: A surgical perspective. Nutrition 6:199–206

    PubMed  CAS  Google Scholar 

  58. O’Dwyer ST, Smith RJ, Hwang TL, Wilmore DW (1989) Maintenance of small bowel mucosa with glutamine-enriched parenteral nutrition. JPEN 13:579–585

    Article  Google Scholar 

  59. Grant J, Snyder PJ (1988) Use of L-glutamine in total parenteral nutrition: J Surg Res 44:506–513.

    Article  PubMed  CAS  Google Scholar 

  60. Jacobs DO, Evans A, O’Dwyer ST, et al (1987) Disparate effects of 5-fluorouracil on the ileum and colon of enterally fed rats with protection by dietary glutamine. Surg Forum 38:45–49

    Google Scholar 

  61. Smith RJ, O’Dwyer ST, Wang XD, et al (1988) The gastrointestinal response to injury, starvation and enteral nutrition. Report of the Eighth Ross Conference of Medical Research. Columbus, Ohio

    Google Scholar 

  62. Schroeder P, Schweizer E, Blömer A, Deltz E (1992) Glutamine prevents mucosal injury after small bowel transplantation. Transplantation Proc 24:1104

    CAS  Google Scholar 

  63. Frankel WL, Zhang W, Afonso J, et al (1993) Glutamine enhancement of structure and function in the transplanted small intestine in the rat. JPEN 17:47–55

    Article  CAS  Google Scholar 

  64. Alverdy JC, Aoys E, Moss G (1988) Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104:185–190

    PubMed  CAS  Google Scholar 

  65. Burke D, Alverdy JC, Aoys E, Moss G (1989) Glutamine supplemented TPN improves gut immune function. Arch Surg 124:1396–1399

    Article  PubMed  CAS  Google Scholar 

  66. Alverdy JC, Aoys E, Weiss-Carrington P, Burke D (1992) The effect of glutamine- enriched TPN on gut immune cellularity. J Surg Res 52:34–38

    Article  PubMed  CAS  Google Scholar 

  67. Fox AD, Kripke SA, DePaula J, Berman JM, Settle RG, Rombeau JL (1988) Effect of a glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. JPEN 12:325–331

    Article  CAS  Google Scholar 

  68. O’Dwyer ST, Scott T, Smith RJ, et al (1987) 5-fluorouracil toxicity on small intestinal mucosa but not white blood cells is decreased by glutamine. Clin Res 35:369a (Abst)

    Google Scholar 

  69. Ziegler TR, Young LS, Benfell K, et al (1992) Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. Ann Intern Med 116:821–828

    PubMed  CAS  Google Scholar 

  70. Jacobs DO, Evans DA, Mealy K, O’Dwyer ST, Smith RJ, Wilmore DW (1988) Combined effects of glutamine and epidermal growth factor (EGF) on GI mucosal cellularity. Surgery 104:358–364

    PubMed  CAS  Google Scholar 

  71. Sarantos, P, Abouhamze A, Souba WW (1992) Glucocorticoids regulate intestinal glu- taminase expression. Surgery 112:278–283

    PubMed  CAS  Google Scholar 

  72. Roediger WEW (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83:424–429

    PubMed  CAS  Google Scholar 

  73. Kripke SA, Fox AD, Berman JM, Settle RG, Rombeau JL (1989) Stimulation of intestinal mucosal growth with intracolonic infusion of short chain fatty acids. JPEN 13:109–116

    Article  CAS  Google Scholar 

  74. Sakata T, Yajima T (1984) Influence of short chain fatty acids on the epithelial cell division of digestive tract. Quart J Exp Physio 69:639–648

    CAS  Google Scholar 

  75. Rombeau JL, Kripke SA, Settle RG (1990) Short-chain fatty acids: Production, absorption, metabolism and intestinal effects. In: Kritchevsky D, Bonfield C, Anderson JW (eds) Dietary fiber: chemistry, physiology and health effects. Plenum Press, New York, pp 317–337

    Google Scholar 

  76. Harig JM, Soergel KH, Komorowski RA, Wood CM (1989) Treatment of diversion colitis with short chain fatty acid irrigation. New Engl J Med 320:23–28

    Article  PubMed  CAS  Google Scholar 

  77. Scheppach WM, Sommer H, Kirchner T, et al (1992) Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103:51–56

    PubMed  CAS  Google Scholar 

  78. Friedman E, Lightdale C, Winawer S (1988) Effects of psyllium fiber and short-chain organic acids derived from fiber breakdown on colonic epithelial cells from high risk patients. Cancer (Letters) 43:121–124

    Article  CAS  Google Scholar 

  79. Young GP, Gibson PR (1991) Contrasting effects of butyrate on proliferation and differentiation of normal and neoplastic cells. In: Short-chain fatty acids: metabolism and clinical importance. Ross Laboratories, Columbus, OH, pp 50–55

    Google Scholar 

  80. Scheppach WM (1991) Short-chain fatty acids are a trophic factor for the human colonic mucosa in vitro. In: Short-chain fatty acids: metabolism and clinical importance. Ross Laboratories, Columbus, OH, pp 90–93

    Google Scholar 

  81. Roediger WEW, Rae DA (1982) Trophic effect of SCFAs on mucosal handling of ions by the defunctioned colon. Br J Surg 69:23–25

    Article  PubMed  CAS  Google Scholar 

  82. McClave SA, Lowen CC, Snider HL (1992) Immunonutrition and enteral hyperalimentation of critically ill patients. Dig Dis Sci 37:1153–1161

    Article  PubMed  CAS  Google Scholar 

  83. Kinsella JE, Lokesh B, Broughton S, Whelan J (1990) Dietary polyunsaturated fatty acids and eicosanoids: Potential effects on the modulation of inflammatory and immune cells; An overview. Nutrition 6:24–44

    PubMed  CAS  Google Scholar 

  84. Marshall LA, Johnston PV (1982) α-Linolenic and linoleic acids and the immune response. Prog Lipid Res 20:731–734

    Article  Google Scholar 

  85. Mascioli E, Leader L, Flores E, Trimbo S, Bistrian B, Blackburn G (1988) Enhanced survival to endotoxin in guinea pig fed IV fish oil emulsions. Lipids 23:623–625

    Article  PubMed  CAS  Google Scholar 

  86. Yoshino S, Ellis EF (1987) Effect of a fish-oil-supplemented diet on inflammation and immunological processes in rats. Intern Arch Allergy Appl Immun 84:233–240

    Article  CAS  Google Scholar 

  87. Kulkarni AD, Fanslow WC, Randolph FB, Van Buren CT (1987) Modulation of delayed hypersensitivity in mice by dietary nucleotide restriction. Transplantation 44:847–849

    PubMed  CAS  Google Scholar 

  88. Randolph FB, Kulkarni AD, Fauslow WC, Pizzini RP, Kumar S, Van Buren CT (1990) Role of RNA as a dietary source of pyrimidines and purine in immune function. Nutrition 6:45–52

    Google Scholar 

  89. Seifter E, Rettura G, Barbul A, Levenson SM (1978) Arginine: An essential amino acid for injured rats. Surgery 84:224–230

    PubMed  CAS  Google Scholar 

  90. Daly JM, Reynolds J, Thom A, et al (1988) Immune and metabolic effects of arginine in the surgical patient. Ann Surg 208:512–523

    Article  PubMed  CAS  Google Scholar 

  91. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox- activated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  92. Stark ME, Szurszewski JH (1992) Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology 103:1928–1949

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lew, J.I., Rombeau, J.L. (1993). Effects of Enteral Nutrients on the Critically Ill Gut. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics