Attention Regulation and Human Prefrontal Cortex

  • R. T. Knight
Part of the Research and Perspectives in Neurosciences book series (NEUROSCIENCE)


The prefrontal cortex is critical for integrative cognitive function, although it is unlikely that this capacity resides in specialized modules in prefrontal regions. Rather, prefrontal cortex appears to modulate activity in multiple cortical and subcortical regions through an extensive network of bidirectional pathways. The net result of neuronal activity in these distributed prefrontal systems sums to produce the higher level capacity attributed to this area.


Prefrontal Cortex Primary Auditory Cortex Attention Regulation Prefrontal Lesion Human Prefrontal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander GE, Newman JD, Symmes D (1976) Convergence of prefrontal and acoustic inputs upon neurons in the superior temporal gyrus of the awake squirrel monkey. Brain Res 116:334–338PubMedCrossRefGoogle Scholar
  2. Amaral DG, Inausti R, Cowan WM (1983) Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263–277PubMedCrossRefGoogle Scholar
  3. Baddeley A (1992a) Working memory. Science 255:556–560PubMedCrossRefGoogle Scholar
  4. Baddeley A (1992b) Working memory: the interface between memory and cognition. J Cog Neurosci 4:281–288CrossRefGoogle Scholar
  5. Bartus RT, Levere TE (1977) Frontal decortication in Rhesus monkeys. A test of the interference hypothesis. Brain Res 119:233–248PubMedCrossRefGoogle Scholar
  6. Brutkowski S (1965) Functions of prefrontal cortex in animals. Physiol Rev 45:721–746PubMedGoogle Scholar
  7. Courchesne E, Hillyard SA, Galambos R (1975) Stimulus novelty, task relevance, and the visual evoked potential in man. Electroencephalogr Clin Neurophysiol 39:131–143PubMedCrossRefGoogle Scholar
  8. Desmedt JE, Debecker J, Manil J (1965) Mise en evidence d’un signe electrique cerebral associé a la detection par le sujet d’un stimulus sensoriel tactile. Bull Acad R Med Belgique 5:887–936Google Scholar
  9. Desmedt JE, Hut NT, Bourguet M (1983) The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest signs of sensory processing in man. Electroencephalogr Clin Neurophysiol 56:272–282PubMedCrossRefGoogle Scholar
  10. Edinger HM, Siegel A, Troiano R (1975) Effect of stimulation of prefrontal cortex and amygdala on diencephalic neurons. Brain Res 97:17–31PubMedCrossRefGoogle Scholar
  11. Fabiani M, Karis D, Donchin E (1986) P300 and recall in an incidental memory paradigm. Psychophysiology 23:298–308PubMedCrossRefGoogle Scholar
  12. Fuster JM (1980) The prefrontal cortex. Raven Press, New YorkGoogle Scholar
  13. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of physiology: the nervous system. American Physiol Soc, Baltimore, pp 373–417Google Scholar
  14. Heilman KM, Valenstein E (1972) Frontal lobe neglect in man. Neurology 22:660–664PubMedGoogle Scholar
  15. Hier DB, Mondlock J, Caplan LR (1983) Recovery of behavioral abnormalities after right hemisphere stroke. Neurology 33:345–350PubMedGoogle Scholar
  16. Hikosaka K, Iwai E, Saito H, Tanaka K (1988) Polyresponse properties of neurons in the anterior bank of the caudal superior temporal sulcus of the Macaque monkey. J Neurophysiol 60:1615–1637PubMedGoogle Scholar
  17. Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180PubMedCrossRefGoogle Scholar
  18. Hillyard SA, Picton TW (1987) Electrophysiology of cognition. In: Plum F (ed) Handbook of physiology: the nervous system. American Physiol Soc, Baltimore, pp 519–584Google Scholar
  19. Jacobsen CF (1935) Functions of frontal association areas in primates. Arch Neurol Psychiat 33:58–569Google Scholar
  20. Karis D, Fabiani M, Donchin E (1986) “P300” and memory: individual differences in the Von Restorff effect. Cog Psychol 16:177–216CrossRefGoogle Scholar
  21. Katayama Y, Tsukiyama T, Tsubokawa T (1985) Thalamic negativity associated with the endogenous positive component of cerebral evoked potentials (P300): recording using discriminative aversive conditioning in humans and cats. Brain Res Bull 14:223–226PubMedCrossRefGoogle Scholar
  22. Kertesz A, Dobrolowski S (1981) Right-hemisphere deficits, lesion size and location. J Clin Neurophysiol 3:283–299Google Scholar
  23. Kimble DP, Bagshaw MH, Pribram KH (1965) The GSR of monkeys during orienting and habituation after selective partial ablations of the cingulate and frontal cortex. Neuropsychology 3:121–128CrossRefGoogle Scholar
  24. Knight RT, Hillyard SA, Woods DL, Neville SJ (1981) The effects of frontal cortex lesions on event-related potentials during auditory selective attention. Electroencephalogr Clin Neurophysiol 52:571–582PubMedCrossRefGoogle Scholar
  25. Knight RT (1984) Decreases response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol 59:9–20PubMedCrossRefGoogle Scholar
  26. Knight RT, Scabini D, Woods DL (1989a) Prefrontal cortex gating of auditory transmission in humans. Brain Res 504:338–342PubMedCrossRefGoogle Scholar
  27. Knight RT, Scabini D, Woods, DL, Clayworth CC (1989b) Contribution of the temporalparietal junction to the auditory P3. Brain Res 502:109–116PubMedCrossRefGoogle Scholar
  28. Knight RT (1990) ERPS in patients with focal brain lesions. Electroencephalogr Clin Neurophysiol (abstr) 75:72CrossRefGoogle Scholar
  29. Knight RT (1991a) Evoked potential studies of attention capacity in human frontal lobe lesions. In: Levin H, Eisenberg H, Benton F (eds) Frontal lobe function and dysfunction. London, Oxford University Press, pp 139–153Google Scholar
  30. Knight RT (1991b) Effects of hippocampal lesions on the human P300. Soc Neuroscience (Abstr) 17:657Google Scholar
  31. Kraus N, Ozdamar O, Stein L (1982) Auditory middle latency responses (MLRs) in patients with cortical lesions. Electroencephalogr Clin Neurophysiol 54:275–287PubMedCrossRefGoogle Scholar
  32. Lemay M, Kido DK (1978) Asymmetries of the cerebral hemisphere on computed tomograms. J Comp Assist Tomog 2:471–476CrossRefGoogle Scholar
  33. Lhermitte F (1986) Human autonomy and the frontal lobes. Part II: patient behavior in complex and social situations: the “environmental dependency syndrome.” Ann Neurol 19:335–343PubMedCrossRefGoogle Scholar
  34. Lhermitte F, Pillon B, Serdaru M (1986) Human autonomy and frontal lobe. Part I: imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol 19:326–334PubMedCrossRefGoogle Scholar
  35. Leuders H, Leser RP, Harn J, Dinner DS, Klem G (1983) Cortical somatosensory evoked potentials in response to hand stimulation. J Neurosurg 58:885–894CrossRefGoogle Scholar
  36. Luria AR, Homskaya ED (1970) Frontal lobes and the regulation of arousal process. In: Mostofsky DI (ed) Attention: contemporary theory and analysis. New York, Appleton-Century-Crofts, pp 303–330Google Scholar
  37. McCallum WC, Curry SH, Cooper R, Pocock PV, Papakostopoulos D (1983) Brain event- related potentials as indicators of early selective processes in auditory target localization. Psychophysiology 20:1–17PubMedCrossRefGoogle Scholar
  38. McCarthy G, Wood CC, Williamson PD, Spencer DD (1989) Task-dependent field potentials in human hippocampal formation. J Neurosci 9:4253–4260PubMedGoogle Scholar
  39. Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325PubMedCrossRefGoogle Scholar
  40. Milner B (1982) Some cognitive effects of frontal lesions in man. Phil Trans Royal Soc London 298:211–226CrossRefGoogle Scholar
  41. Neville HJ, Foote SL (1984) Auditory event-related potentials in the squirrel monkey: Parallels to human late were responses. Brain Res 298:107–116PubMedCrossRefGoogle Scholar
  42. Onofrj M, Fulgente T, Noblio D, Malatesta G, Bazzano S, Colamartino P, Gami D (1992) P3 recordings in patients with bilateral temporal lobe lesions. Neurology 42:1762–1767PubMedGoogle Scholar
  43. Paller KA, Kutas M, Mayes AR (1987) Neural correlates of encoding in an incidental learning paradigm. Electroencephalog Clin Neurophysiol 55:417–426Google Scholar
  44. Paller KA, Zola-Morgan S, Squire LR, Hillyard SA (1988) P3-like brain wave in normal monkeys and in monkeys with medial temporal lesions. Behav Neurosci 102:714–725PubMedCrossRefGoogle Scholar
  45. Pelizzone M, Hari R, Makela JP, Huttunen J, Hamalainen M (1987) Cortical origin of middle- latency auditory evoked responses in man. Neurosci Lett 82:303–307PubMedCrossRefGoogle Scholar
  46. Rugg MD, Pickles CP, Potter DD, Roberts RC (1991) Normal P300 following extensive damage to the left medial temporal lobe. J Neurol Neurosurg Psychiatr 54:217–222PubMedCrossRefGoogle Scholar
  47. Scabini D (1992) Contribution of anterior and posterior association cortices to the human P300 cognitive event related potential. PhD Dissertation, University of California, DavisGoogle Scholar
  48. Shimamura AP, Gershberg FB, Jurica PJ, Mangels JA, Knight RT (1993) Intact implicit memory in patients with focal frontal lobe lesions. Neuropsychology, in pressGoogle Scholar
  49. Skinner JE, Yingling CD (1977) Central gating mechanisms that regulate event-related potentials and behavior. In: Desmedt JE (ed) Progress in clinical neurophysiology (Vol 1). Basel, S Karger, pp 30–69Google Scholar
  50. Smith ME, Halgren E, Sokolic M, Daudena P, Musolino A, Liegeois-Chauvel C, Chauvel P (1990) The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalography and Clinical Neurophysiology, 76:235–248PubMedCrossRefGoogle Scholar
  51. Sokolov EN (1963) Higher nervous functions: the orienting reflex. Ann Rev Physiol 25:545–580CrossRefGoogle Scholar
  52. Squires N, Squires K, Hillyard SA (1975) Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalog Clin Neurophysiol 38:387–401CrossRefGoogle Scholar
  53. Stein S, Volpe BT (1983) Classic “parietal” neglect syndrome after subcortical right frontal lobe infarction. Neurology 33:797–799PubMedGoogle Scholar
  54. Sutherling WW, Crandall PH, Darcey TM, Becker DP, Levesque MF, Barth DS (1988) The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology 38:1705–1714PubMedGoogle Scholar
  55. Sutton S, Baren M, Zubin J, John ER (1965) Evoked potentials correlates of stimulus uncertainty. Science 150:1187–1188PubMedCrossRefGoogle Scholar
  56. Tulving E, Schacter DL (1990) Priming and human memory systems. Science 247:301–306PubMedCrossRefGoogle Scholar
  57. Wada JA, Clarke R, Hamm A (1975) Cerebral hemispheric asymmetry in humans. Arch Neurol 32:239–246PubMedCrossRefGoogle Scholar
  58. Weinberger DR, Luchins DJ, Morisha J, Wyatt RJ (1982) Asymmetric volumes of the right and the left frontal and occipital regions of the human brain. Ann Neurol 11:97–100PubMedCrossRefGoogle Scholar
  59. Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79:170–191PubMedCrossRefGoogle Scholar
  60. Wood CC, Spencer DD, Allison T, McCarthy G, Williamson PD, Goff WB (1988) Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg 68:99–111PubMedCrossRefGoogle Scholar
  61. Woods DL (1990) The physiological basis of selective attention: implications of event-related potential studies. In: Rohrbaugh J, Johnson Jr R, Parasurman R (eds) Event-related brain potentials. Oxford University Press, New York, pp 178–210Google Scholar
  62. Woods DL, Knight RT (1986) Electrophysiological evidence of increased distractibility after dorsolateral prefrontal lesions. Neurology 36:212–216PubMedGoogle Scholar
  63. Yamaguchi S, Knight RT (1990) Gating of somatosensory inputs by human prefrontal cortex. Brain Res 521:281–288PubMedCrossRefGoogle Scholar
  64. Yamaguchi S, Knight RT (1991a) P300 generation by novel somatosensory stimuli. Electroencephalogr Clin Neurophysiol 78:50–55PubMedCrossRefGoogle Scholar
  65. Yamaguchi S, Knight RT (1991b) Anterior and posterior association cortex contributions to the somatosensory P300. J Neurosci 11(7):2039–2054PubMedGoogle Scholar
  66. Yamaguchi S, Knight RT (1992) Effects of temporal-parietal lesions on the somatosensory P3 to lower limb stimulation. Electroencephalogr Clin Neurophysiol 84:139–148PubMedCrossRefGoogle Scholar
  67. Yamaguchi S, Globus H, Knight RT (1993) P3-like potentials in rats. Electroencephalogr Clin Neurophysiology, in pressGoogle Scholar
  68. Yingling CD, Skinner JE (1977) Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In: Desmedt JE (eds) Progress in clinical neurophysiology (Vol 1). Karger S, Basel, pp 70–96Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. T. Knight
    • 1
  1. 1.Department of Neurology, Center for NeuroscienceUniversity of CaliforniaDavisUSA

Personalised recommendations