Data Fusion for Environmental Monitoring

  • Thies Wittig
  • Hao-Nhien Pham
Part of the Research Reports ESPRIT book series (ESPRIT, volume 1)


Environmental Monitoring is a very general term, comprising the whole spectrum of sensors and sensing—from local sensors to remote sensing from satellites. The term also implies a variety of sensor data processing aspects—from simple recording and report-generation to highly complex propagation models and prediction. This paper describes the aim of an ESPRIT project1 that focuses on the monitoring of river and ground water on the basis of distributed sets of sensors.


Fusion Process Sensor Model Situation Assessment Logical Sensor Drinking Water Supplier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Afsarmanesh H., McLeod D., “The 3DIS: An Extensible Object-Oriented Information Management Enviroment”, ACM Transactions on Information System, Vol. 7, No 4, pp. 339–377, Oct. 1989.CrossRefGoogle Scholar
  2. 2.
    Arnold U., Datta B., Hänscheid P., “Intelligent Geographic Information Systems (IGIS) and Surface Water Modelling”, Proc. IAHS Congress 89, Symp. 3, pp. 407–416, Baltimore May 1989.Google Scholar
  3. 3.
    Ayache N., Faugeras O.D., “Building, Registrating and Fusing Noisy Visual Maps”, Research Rapport No 596, INRIA-Rocquencourt, Dec. 1986.Google Scholar
  4. 4.
    Decker K.S., “Distributed Problem Solving Techniques: a Survey”, IEEE SMC, Vol 17, No 5, 1987.Google Scholar
  5. 5.
    Hanson A.R., Riseman E.M., Williams T.D., “Sensor and Information Fusion from Knowledge-based Constraints”, in Proc. SPIE, Vol. 931, pp. 186–196, Sensor Fusion, Weaver C.W., Orlando Florida, April 1988.Google Scholar
  6. 6.
    Henderson T., Weitz E., Hansen C., “Multisensor Knowledge Systems, Robotic Research,” Vol. 7, No 6, pp. 114–137, MIT Press 1987.Google Scholar
  7. 7.
    Henderson T., Shilcrat E., “Logical Sensor SystemS”, J. Robotic Systems, Vol. 1, No 2, pp. 169–193, 1984.CrossRefGoogle Scholar
  8. 8.
    Huntsberger T.L., Jayaramamurthy S.N., “A Framework for Multi-Sensor Fusion in Presence of Uncertainty”, in Proc. Workshop Spatial Reasoning and Multi-Sensor Fusion, St. Charles Illinois, pp. 345–350, Oct. 1987.Google Scholar
  9. 9.
    Larzewski H., “Datenbanken in der Umwelttechnik”, UTB-Berichte, No 15, Berlin, June 1989.Google Scholar
  10. 10.
    Slade S., “Case-Based Reasoning: A Research Paradigm”, AI Magazine, Vol. 12, No 1, 1991.Google Scholar
  11. 11.
    Wittig T., “ARCHON:—an Architecture for Multi-Agent Systems”, Ellis Horwood, 1992.Google Scholar

Copyright information

© ECSC-EEC-EAEC, Brussels-Luxembourg 1993

Authors and Affiliations

  • Thies Wittig
    • 1
  • Hao-Nhien Pham
    • 2
  1. 1.Atlas Elektronik GmbHBremenGermany
  2. 2.Laboratoire d’Informatique Avancée de CompiégneLyonnaise des Eaux DumezCompiégneFrance

Personalised recommendations