Advertisement

Angular-Dependent Many-Atom Bond-Order Potentials

  • M. Aoki
  • P. Gumbsch
  • D. G. Pettifor
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 114)

Abstract

The state-of-the-art many-atom potentials for the bond order, which are derived within tight binding Hückel theory, are shown to be promising tools in modeling of the structural properties of materials. Explicit angular dependence of these potentials is naturally derived on the theoretical basis of the exact many-atom expansion theorem for the bond order. It is shown that a good convergence is achieved by satisfying a sum rule for the intersite Green’s function.

Keywords

Bond Order Tight Binding Atomistic Simulation Interference Term Interatomic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiomistic Simulation of Materials, edited by V. Vitek and D.J. Srolovitz, (Plenum, New York, 1989).Google Scholar
  2. 2.
    M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
  3. 3.
    M.S. Daw, Phys. Rev. B 39, 7441 (1989).CrossRefGoogle Scholar
  4. 4.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988); Phys. Rev. B 38, 9902 (1988).CrossRefGoogle Scholar
  5. 5.
    F. Stilinger and T. Weber, Phys. Rev. B 31, 5262 (1985).CrossRefGoogle Scholar
  6. 6.
    J.A. Moriarty, Phys. Rev. B 42, 1609 (1990).CrossRefGoogle Scholar
  7. 7.
    A.E. Carlsson, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1990), Vol. 43, p. 1.Google Scholar
  8. 8.
    C.A. Coulson, Proc. Roy. Soc. (Lond.) A 169, 413 (1939).CrossRefGoogle Scholar
  9. 9.
    A.P. Sutton, M.W. Finnis, D.G. Pettifor, and Y. Ohta, J. Phys. C 21, 35 (1988).CrossRefGoogle Scholar
  10. 10.
    C. Lanczos, J. Res. Natl. Bur. Stand. 45, 225 (1950).Google Scholar
  11. 11.
    R. Haydock, V. Heine, M.J. Kelly, J. Phys. C 5, 2845 (1972).CrossRefGoogle Scholar
  12. 12.
    R. Haydock, in Solid Slate Physics, edited by H. Ehrenreich and D. Turnbull (Academic, New York, 1980), Vol. 35, p. 215.Google Scholar
  13. 13.
    M. Aoki, P. Gumbsch and D.G. Pettifor, unpublished.Google Scholar
  14. 14.
    D.G. Pettifor and M. Aoki, in Structural and Phase Stability of Alloys, edited by J.L. Morán-López, F. Mejía-Lira and J.M. Sanchez, (Plenum, New York, 1992), p. 119.CrossRefGoogle Scholar
  15. 15.
    D.G. Pettifor, in Many-Atom Interactions in Solids, edited by M. Manninen, R.M. Nieminena, and M.J. Puska, (Springer-Verlag, Now York, 1990), p. 64CrossRefGoogle Scholar
  16. 16.
    J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954).CrossRefGoogle Scholar
  17. 17.
    M. Aoki and D.G. Pettifor, to be published in Proc. Int. Conf Phys. Transition Metals, Darmstadt, FRG, (1992).Google Scholar
  18. 18.
    M. Aoki, and D.G. Pettifor, to be published in Proc. of CAMSE92 (1992).Google Scholar
  19. 19.
    S. Glanville, A.T. Paxton and M.W. Finnis, J. Phys. F 18, 693 (1988).CrossRefGoogle Scholar
  20. 20.
    D.G. Pettifor, Phys. Rev. Lett. 63, 2480 (1989).CrossRefGoogle Scholar
  21. 21.
    D.G. Pettifor and M. Aoki, Phil. Trans. R. Soc. Lond. A 334, 439 (1991).CrossRefGoogle Scholar
  22. 22.
    M. Aoki, P. Gumbsch and D.G. Pettifor, to be published in Proc. of CAMSE92(1992).Google Scholar
  23. 23.
    R.H. Brown and A.E. Carlsson, Phys. Rev. B 32, 6125 (1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Aoki
    • 1
    • 2
  • P. Gumbsch
    • 3
    • 4
  • D. G. Pettifor
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxforUK
  2. 2.Department of PhysicsGifu UniversityYanagido, GifuJapan
  3. 3.Department of MathematicsImperial CollegeLondonUK
  4. 4.Max-Planck-Institut für MetallforschungStuttgartGermany

Personalised recommendations