Metal-Insulator Transition in Ni Compounds

  • M. Takahashi
  • J. Kanamori
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 114)


The metal-insulator transition in Ni compounds is discussed on the basis of two calculations which take account of electron correlation. The first calculation which assumes a linear model of a finite size simulating a compound NiX with X representing p-valence atom such as O and S determines rigorously the wave function of the ground state by use of the Lanczos method. The second one which adopts a realistic three dimensional model uses the Local Ansatz approach to take into account the correlation effect. It is concluded that a Ni atom in the metallic state near the transition keeps very likely a well developed magnetic moment. Correlation between neighboring Ni magnetic moments, however, will become much smaller than that in the insulating phase. The results are consistent with the photoemission experiment which observes quite a small change in the spectra across the transition.


Spin Correlation Ligand Atom Lanczos Method Large Magnetic Moment Charge Transfer Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Koehler Jr. and R. L. White: J. Appl. Phys. 44 (1973) 1682.CrossRefGoogle Scholar
  2. 2.
    A. Fujimori, M. Matoba, S. Anzai, K. Terakura, M. Taniguchi, S. Ogawa and S. Suga: J. Mag. and Mag. Mat. 70 (1987) 67. A.Fujimori, H.Namatame, M.Matoba and S.Anzai: Phys. Rev. B42 (1990) 620.CrossRefGoogle Scholar
  3. 3.
    A. Fujimori, K. Terakura, M. Taniguchi, S. Ogawa, S. Suga, M. Matoba and S. Anzai: Phys. Rev. B37 (1988) 3109.Google Scholar
  4. 4.
    A. Fujimori, F. Minami and S. Sugano: Phys. Rev. B29 (1984) 5225.Google Scholar
  5. 5.
    G. A. Sawatzky and J. W. Allen: Phys. Rev. Lett. 53 (1984) 2239.CrossRefGoogle Scholar
  6. 6.
    M. Takahashi and J. Kanamori: J. Phys. Soc. Jpn. 60 (1991) 3154.CrossRefGoogle Scholar
  7. 7.
    P. Fulde: Electron Correlations in Molecules and Solids, Springer Ser. Solid-State Sci., Vol.100 (Springer-Verlag 1991)Google Scholar
  8. 8.
    C.Lanczos: J. Res. Nat. Bur. Standards 45 (1950) 255.Google Scholar
  9. 9.
    H. Yokoyama and H. Shiba: J. Phys. Soc. Jpn. 56 (1987) 1490.CrossRefGoogle Scholar
  10. 10.
    R. M. Fye and J. E. Hirsch: Phys. Rev. B40 (1989) 4780Google Scholar
  11. 11.
    A. M. Olés: J. Phys. C15 (1982) 2745.Google Scholar
  12. 12.
    J. Zaamen, G. A. Sawatzky and J. W. Allen: J. Mag. and Mag. Mat.54–57 (1986) 607, Phys. Rev. Lett. 55 (1985) 418.CrossRefGoogle Scholar
  13. 13.
    K. Yosida and S. Inagaki: J. Phys. Soc. Jpn. 50 (1981) 3268.CrossRefGoogle Scholar
  14. 14.
    J. van Elp, H. Eskes, P. Kuiper, and G. A. Sawatzky: Phys. Rev. B45 (1992) 1612.Google Scholar
  15. 15.
    L. F. Mattheiss: Phys. Rev. B5 (1972) 290.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Takahashi
    • 1
  • J. Kanamori
    • 2
  1. 1.Department of PhysicsOsaka UniversityToyonaka, Osaka 560Japan
  2. 2.Osaka UniversitySuita, Osaka 565Japan

Personalised recommendations