Skip to main content

Quantum Monte-Carlo Calculations on Real Materials

  • Conference paper
Book cover Interatomic Potential and Structural Stability

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 114))

Abstract

Quantum Monte Carlo methods can calculate exact or nearly exact ground state properties of many body systems. The subject of this paper is a brief outline of some of the current developments in applying such methods to general materials and results of recent calculations. A critical issue which we discuss is the accurate treatment of core electrons, which is crucial to ab initio calculations on materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, Berlin, 1979); K. E. Schmidt and M. H. Kalos, in Monte Carlo Methods in Statistical Physics II, edited by K. Binder (Springer, Berlin, 1984).

    Google Scholar 

  2. D. M. Ceperley, and B. Bernu, J. Chem. Phys. 89, 6318(1988).

    Article  Google Scholar 

  3. D. M. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 16, 3081(1977).

    Article  CAS  Google Scholar 

  4. S. Fahy, X. W. Wang and S. G. Louie, Phys. Rev. Lett. 61, 1631(1988); Phys. Rev. B42, 3503(1990).

    Article  CAS  Google Scholar 

  5. D. M. Ceperley, Phys. Rev. B 18, 3126(1978); D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566(1980).

    Article  CAS  Google Scholar 

  6. P. J. Reynolds, D. M. Ceperley, B. J. Alder and W. A. Lester, J. Chem. Phys. 77, 5593(1982); D. M. Ceperley and B. J. Alder, ibid. 81, 5833(1984).

    Article  CAS  Google Scholar 

  7. Some authors distinguish between GFMC and DMC. Our DMC calculations use a short time approximation to the Green’s function (see Ref. [6]), and we have tested that the time step is small enough that this is not an essential approximation.

    Google Scholar 

  8. M. H. Kalos, preprint.

    Google Scholar 

  9. D. M. Ceperley and B. J. Alder, Phys. Rev. B36, 2092(1987).

    Google Scholar 

  10. G. B, Bachelet, D. M. Ceperley and M. G. B. Chiochetti, Phys. Rev. Lett. 62, 2088(1989).

    Article  CAS  Google Scholar 

  11. D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, 1494(1979); G. B. Bachelet, D. R. Hamann and M. Schlüter, Phys. Rev. B26, 4199(1982).

    Article  CAS  Google Scholar 

  12. W. M. C Foulkes and M Schlüter, Phys. Rev. B42, 11505(1990).

    Google Scholar 

  13. X. P. Li,. D. M. Ceperley, and R. M. Martin, Phys. Rev. 44, 10929 (1991).

    CAS  Google Scholar 

  14. L. Mitáš, E. L. Shirley and D. M. Ceperley, J. Chem. Phys. 95, 3467 (1991).

    Article  Google Scholar 

  15. L. Mitáš, in Computer Simulations in Condensed Matter Physics IV, ed. D. P. Landau, Springer (1992); earlier references on approaches to deal with core electrons and non-local potentials in QMC are given in this paper.

    Google Scholar 

  16. V. Natoli, R. M. Martin, and D. M. Ceperley, submitted for publication.

    Google Scholar 

  17. X. W. Wang, S. Fahy, and S. G. Louie, Phys. Rev. Lett. 65, 2414(1990).

    Article  CAS  Google Scholar 

  18. E. L. Shirley,thesis, University of Illinois, 1991; E. L. Shirley and R. M. Martin, to be published.

    Google Scholar 

  19. E. L. Shirley, L. Mitáš, and R. M. Martin, Phys. Rev. 44, 3395 (1991).

    Google Scholar 

  20. Y. Kwon, D. M. Ceperley, and R. M. Martin, to be published.

    Google Scholar 

  21. L. Hedin and S. Lundquist, Solid State Physics, vol. 23, p.1 (Academic Press, New York, 1969).

    Google Scholar 

  22. W. Muller, J. Flesch, and W. Meyer, J. Chem. Phys. 80, 3297 (1982); W. Muller, and W. Meyer, J. Chem. Phys. 80, 3311 (1982).

    Article  Google Scholar 

  23. X. P. Li, R. J. Needs, R. M. Martin, and D. M. Ceperley, Phys. Rev. 45, 6124 (1992).

    Google Scholar 

  24. E. Krotscheck and W. Kohn, Phys. Rev. Lett. 57, 862 (1986).

    Article  CAS  Google Scholar 

  25. Z. Y. Zhang, D. C Langreth, and J. Perdew, Phys. Rev. 41, 5674 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, R.M. et al. (1993). Quantum Monte-Carlo Calculations on Real Materials. In: Terakura, K., Akai, H. (eds) Interatomic Potential and Structural Stability. Springer Series in Solid-State Sciences, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84968-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84968-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84970-1

  • Online ISBN: 978-3-642-84968-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics