The Molecular Basis of Genetic Defects in HDL Metabolism

  • H. Bryan Brewer
  • Daniel J. Rader
  • Hanns-Georg Klein
  • Katsunori Ikewaki
  • Silvia Santamarina-Fojo
Conference paper
Part of the Sitzungsberichte der Heidelberger Akademie der Wissenschaften book series (HD AKAD, volume 1993/94 / 1993/1)


Plasma high density lipoproteins (HDL) have been the focus of active research over the last two decades since HDL-cholesterol have been inversely associated with the risk of premature cardiovascular disease, respectively (1–4). HDL have been proposed to modulate the development of premature vascular disease by facilitating the removal of excess cholesterol from peripheral tissues and transporting the cholesterol directly back to the liver or transferring the cholesterol to VLDL or LDL by the cholesterol ester exchange protein (CETP) (5–7). The process of HDL mediated transport of cholesterol from peripheral tissues back to the liver has been termed reverse cholesterol transport (8,9) and remains to be definitively confirmed.


High Density Lipoprotein Cholesteryl Ester Transfer Protein Cholesterol Efflux Hepatic Lipase Lipoprotein Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, G. J. and N. E. Miller. 1975. Plasma-high-densäy-lipoprotein concentration and development of ischaemic heart-disease. Lancet 1:16–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Gordon, C. G., W. P. Castelli, M. C. Hjorü, and W. B. Kannel, and T. R. Dawber. 1977. High density lipoprotein as a protective factor against coronary heart disease: the Framingham study. Am. J. Med. 62:707–714.PubMedCrossRefGoogle Scholar
  3. 3.
    Miller, N. E., D. S. Thelle, O. H. Forde, and O. D. Mjos. 1977. The Tromso heart-study: high-density lipoproteins and coronary heart-disease: a prospective case-control study. Lancet 1:965–968.PubMedCrossRefGoogle Scholar
  4. 4.
    Gordon, D. J. and B. M. Rifkind. 1989. High-density lipoprotein-the clinical implications of recent studies. N. Engl. J. Med. 321:1311–1316.PubMedCrossRefGoogle Scholar
  5. 5.
    Brewer, H. B. Jr, E. J. Schaefer, J. C. Osborne, and L. A. Zech. 1979. High density lipoproteins: an overview. In Report of the High-Density Lipoprotein Methodology Workshop. K. Lippel, editor. U.S. Department of Health, Education and Welfare, Bethesda. 29.Google Scholar
  6. 6.
    Eisenberg, S. 1984. High density lipoprotein metabolism. J. Lipid Res. 25:1017–1058.PubMedGoogle Scholar
  7. 7.
    Tall, A. R. 1986. Plasma lipid transfer proteins. J. Lipid Res. 27:361–367.PubMedGoogle Scholar
  8. 8.
    Glomset, J. A., E. T. Janssen, R. Kennedy, and J. Dobbins. 1966. Role of plasma lecithinxholesterol aeyltransferase in the metabolism of high density lipoproteins. J. Lipid Res. 7:638–48.PubMedGoogle Scholar
  9. 9.
    Glomset, J. A. 1968. The plasma lecithin: cholesterol acyltransferase reaction. J. Lipid Res. 9:155–167.PubMedGoogle Scholar
  10. 10.
    Alaupovic, P. 1972. Conceptual development of the classification systems of plasma lipoproteins. Protides of the biological fluids. Proc of 19th Colloquium 9–19.Google Scholar
  11. 11.
    Kostner, G. and P. Alaupovic. 1972. Studies of the composition and structure of plasma lipoproteins. Separation and quantification of the lipoprotein families occurring in the high density lipoproteins of human plasma. Biochemistry 11:3419–3428.PubMedCrossRefGoogle Scholar
  12. 12.
    Osborne, J. C. Jr. and H. B. Brewerjr. 1977. The plasma lipoproteins. In Advances in Protein Chemistry. Adv. Protein. Chem. 31:253–337.PubMedCrossRefGoogle Scholar
  13. 13.
    Nestruck, A. C., P. D. Niedmann, H. Wieland, and D. Seidel. 1983. Chromatofocusing of human high density lipoproteins and isolation of lipoproteins A and A-I. Biochim. Biophys. Acta 753:65–73.PubMedGoogle Scholar
  14. 14.
    Cheung, M. C. and J. J. Albers. 1984. Characterization of lipoprotein particles isolated by immunoaffinity chromatography. Particles containing A-I and A-II and particles containing A-I but no A-n. J. Biol. Chem. 259:12201–12209.PubMedGoogle Scholar
  15. 15.
    Puchois, P., A. Kandoussi, P. Fievet, J. L. Fourrier, M. Bertrand, E. Koren, and J. C. Fruchart. 1987. Apolipoprotein A-I containing lipoproteins in coronary artery disease. Atherosclerosis 68:35–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Barbaras, R., P. Puchois, P. Grimaldi, A. Barkia, J. C. Fruchart, and G. Ailhaud. 1987. Relationship in adipose cells between the presence of receptor sites for high density lipoproteins and the promotion of reverse cholesterol transport. Biochem. Biophys. Res. Commun. 149:545–554.PubMedCrossRefGoogle Scholar
  17. 17.
    Barbaras, R., P. Puchois, J. C. Fruchart, and G. Ailhaud. 1987. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpA-I: A-II particles. Biochem. Biophys. Res. Commun. 142:63–69.PubMedCrossRefGoogle Scholar
  18. 18.
    Schultz, J. R., J. G. Verstuyft, E. L. Gong, A. V. Nichols, and E. M. Rubin. 1992. ApoA-I and apoA-I + apoA-II transgenic mice: a comparison of atherosclerotic susceptibility. Circulation 86:1–472.(Abstr.)Google Scholar
  19. 19.
    Mowri, H.-O., W. Patsch, L. C. Smith, A. M. Gottojr, and J. R. Patsch. 1990. Different reactivities of HDL2 subfractions with hepatic lipase. Circulation 82:558.Google Scholar
  20. 20.
    Jahn, C. E., J. C. Osborne Jr., E. J. Schaefer, and H. B. Brewerjr. 1983. Activation of the enzymic activity of hepatic lipase by apolipoprotein A-II. Characterization of a major component of high density lipoprotein as the activating plasma component in vitro. Eur. J. Biochem. 131:25–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Eggerman, T. L., J. M. Hoeg, M. S. Meng, A. Tombragel, D. Bojanovski, and H. B. Brewerjr. 1991. Differential tissue-specific expression of human apoA-I and apoA-II. J. Lipid Res. 32:821–828.PubMedGoogle Scholar
  22. 22.
    Schaefer, E. J., C. B. Blum, R. I. Levy, L. L. Jenkins, P. Alaupovic, D. M. Foster, and H. B. Brewer,Jr. 1978. Metabolism of high-density lipoprotein apolipoproteins in Tangier disease. N. Engl. J. Med. 299:905–910.PubMedCrossRefGoogle Scholar
  23. 23.
    Schaefer, E. J., L. A. Zech, L. L. Jenkins, T. J. Bronzert, E. A. Rubalcaba, R. T. Lindgren, R. L. Aamodt, and H. B. Brewerjr. 1982. Human apolipoprotein A-I and A-II metabolism. J. Lipid Res. 23:850–862.PubMedGoogle Scholar
  24. 24.
    Gregg, R. E. and H. B. Brewerjr. 1988. The role of apolipoprotein E and lipoprotein receptors in modulating the in vivo metabolism of apolipoprotein B-containing lipoproteins in humans. Clin. Chem. 34:28–32.Google Scholar
  25. 25.
    Rader, D. J., G. Castro, L. A. Zech, J. C. Fruchart, and H. B. Brewerjr. 1991. In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I, A-IL J. Lipid Res. 32:1849–1859.PubMedGoogle Scholar
  26. 26.
    Norum, K. R., E. Gjone, and J. A. Glomset. 1989. Familial lecithin: cholesterol acyltransferase deficiency including fish eye disease. In The Metabolic Basis of Inherited Disease. C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, editors. McGraw-Hill, New York. 1181–1194.Google Scholar
  27. 27.
    Carlson, L. A. 1982. Fish eye disease: a new familial condition with massive corneal opacities and dyslipoproteinaemia. Eur. J. Clin. Invest. 12:41–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Carlson, L. A. and L. Holmquist. 1985. Evidence for the presence in human plasma of lecithin: cholesterol acyltransferase activity (beta-LCAT) specifically esterifying free cholesterol of combined pre-beta-and beta-lipoproteins. Studies of fish eye disease patients and control subjects. Acta Med. Scand. 218:197–205.PubMedCrossRefGoogle Scholar
  29. 29.
    Taramelli, R., M. Pontoglio, G. Candiani, S. Ottolenghi, H. Dieplinger, A. Catapano, J. Albers, C. Vergani, and J. McLean. 1990. Lecithin cholesterol acyl transferase deficiency: Molecular analysis of a mutated allele. Hum. Genet. 85:195–199.PubMedCrossRefGoogle Scholar
  30. 30.
    Bujo, H., J. Kusunom, M. Ogasawara, T. Yamamoto, Y. Ohta, T. Shimada, Y. Saito, and S. Yoshida. 1991. Molecular defect in familial lecithinxholesterol acyltransferase (LCAT) deficiency: A single nucleotide insertion in LCAT gene causes a complete deficient type of the disease. Biochem. Biophys. Res. Commun. 181:933–940.PubMedCrossRefGoogle Scholar
  31. 31.
    Gotoda, T., N. Yamada, T. Murase, M. Sakuma, N. Murayama, H. Shimano, K. Kozaki, J. J. Albers, Y. Yazaki, and Y. Akanuma. 1991. Differential phenotypic expression by three mutant alleles in familial lecithinxholesterol acyltransferase deficiency. Lancet 338:778–781.PubMedCrossRefGoogle Scholar
  32. 32.
    Skretting, G., J. P. Blomhoff, J. Solheim, and H. Prydz. 1992. The genetic defect of the original Norwegian lecithinxholesterol acyltransferase deficiency families. FEBS Letters 309:307–310.PubMedCrossRefGoogle Scholar
  33. 33.
    Assmann, G., A. von Eckardstein, and H. Funke. 1991. Lecithin-cholesterol acyltransferase deficiency and fish-eye disease. Curr. Opin. Lipidol. 2:110–117.CrossRefGoogle Scholar
  34. 34.
    Carlson, L. A. and L. Holmquist 1985. Evidence for deficiency of high density lipoprotein lecithin: cholesterol acyltransferase activity (alpha-LCAT) in fish eye disease. Acta Med. Scand. 218:189–196.PubMedCrossRefGoogle Scholar
  35. 35.
    Funke, H., A. von Eckardstein, P. H. Pritchard, J. J. Albers, J. J. P. Kastelein, C. Droste, and G. Assmann. 1991. A molecular defect causing fish eye disease: An amino acid exchange in lecithin-cholesterol acyltransferase (LCAT) leads to the selective loss of α-LCAT activity. Proc. Natl. Acad. Sci. USA 88:4855–4859.PubMedCrossRefGoogle Scholar
  36. 36.
    Klein, H.-G., P. Lohse, P. H. Pritchard, D. Bojanovski, H. Schmidt, and H. B. Brewerjr. 1992. Two different allelic mutations in the lecithin-cholesterol acyltransferase gene associated with the fish eye syndrome. Lecithin-cholesterol acyltransferase (Thr123 → IIe) and lecithin-cholesterol acyltransferase (Thr347 → Met). Journal of Clinical Investigation 89:499–506.PubMedCrossRefGoogle Scholar
  37. 37.
    Skretting, G. and H. Prydz. 1992. An amino acid exchange in exon I of the human lecithin: Cholesterol acyltransferase (LCAT) gene is associated with fish eye disease. Biochem. Biophys. Res. Commun. 182:583–587.PubMedCrossRefGoogle Scholar
  38. 38.
    Rader, D. I, G. R. Castro, M. R. Kindt, L. A. Zech, J. C. Fruchart, and H. B. Brewerjr. 1990. Differential in vivo metabolism of HDL subclasses LpA-I and LpA-I, A-II in man. Circulation 38:240A.(Abstr.)Google Scholar
  39. 39.
    Brown, M. L., A. Inazu, C. B. Hesler, L. B. Ageuon, C. Mann, M. E. Whitlock, Y. L. Marcel, R. W. Milne, J. Koizumi, H. Mabuchi, and et al. 1989. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342:448–451.PubMedCrossRefGoogle Scholar
  40. 40.
    Inazu, A., M. L. Brown, C. B. Hesler, L. B. Agellon, J. Koizumi, K. Takata, Y. Maruhama, H. Mabuchi, and A. R. Tall. 1990. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. New England Journal of Medicine 323:1234–1238.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamashita, S., D. Y. Hui, J. R. Wetterau, D. L. Sprecher, J. A. K. Harmony, N. Sakai, Y. Matsuzawa, and S. Tarui. 1991. Characterization of plasma lipoproteins in patients heterozygous for human plasma cholesteryl ester transfer protein (CETP) deficiency: Plasma CETP regulates high-density lipoprotein concentration and composition. Metabolism: Clinical and Experimental 40:756–763.CrossRefGoogle Scholar
  42. 42.
    Ikewaki, K., D. J. Rader, M. Nishiwaki, T. Sakamoto, J. R. Schaefer, F. Thomas, L. A. Zech, T. Ishikawa, M. Nagano, H. Nakamura, and H. B. Brewer,Jr. 1992. Cholesterol ester transfer protein deficiency: in vivo metabolism of apoE and apoB. Circulation 86:282A.(Abstr.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. Bryan Brewer
    • 1
  • Daniel J. Rader
    • 1
  • Hanns-Georg Klein
    • 1
  • Katsunori Ikewaki
    • 1
  • Silvia Santamarina-Fojo
    • 1
  1. 1.National Institutes of HealthNational Heart, Lung, and Blood Institute, Molecular Disease BranchRockville Pike, BethesdaBethesdaUSA

Personalised recommendations