Cellular Interactions in Atherogenesis

  • Eberhard von Hodenberg
  • Eva Pestel
  • Martina Hautmann
  • Jörg Kreuzer
  • Christoph Bode
  • Wolfgang Kübler
Conference paper
Part of the Sitzungsberichte der Heidelberger Akademie der Wissenschaften book series (HD AKAD, volume 1993/94 / 1993/1)


The very early atherosclerotic lesion (fatty streak) as well as advanced lesions consist of functionally altered endothelial cells, differentiated macrophages, activated T-lymphocytes, and proliferating smooth muscle cells (Ross 1986; Schwartz et al. 1991). These cells are able to secrete multiple biologically active molecules. By means of these mediators the cells can interact with each other, affecting the state of differentiation and proliferation of other neighbouring vascular cells.


Foam Cell Fatty Streak Macrophage Differentiation Human Aortic Smooth Muscle Cell Early Atherosclerotic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bond HM, Morrone G, Venuta S, Howell KE: Characterization and purification of proteins which bind high-density lipoprotein-a putative cell-surface receptor. Biochem J 1991, 279:633–641PubMedGoogle Scholar
  2. Clinton SK, Underwood R, Sherman ML, Knife DW, Libby P: M-CSF gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 1992, 140:303–316Google Scholar
  3. Cybulski MI, and Gimbrone MA: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991, 251:788–791CrossRefGoogle Scholar
  4. Emmrich, F, and Andreesen R: Monoclonal antibodies against differentiation antigens on human macrophages. Immunology Letters 1985, 9:321–324PubMedCrossRefGoogle Scholar
  5. Faggioto A, Ross R, Harker L: Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 1984, 4: 323–340CrossRefGoogle Scholar
  6. Folkman J, Klagsbrun M: Angiogenic factors. Science 1987, 235:442–447PubMedCrossRefGoogle Scholar
  7. Gerrity RG: The role of the monocyte in atherogenesis. I.Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 1981, 103:181–190PubMedGoogle Scholar
  8. Gerrity RG, Goss J, Soby L: Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Arteriosclerosis 1985, 5:55–65PubMedCrossRefGoogle Scholar
  9. Glomset JA: The plasma lecithinxholesterol acyltransferase reaction. J Lipid Res 1968, 9:155–167PubMedGoogle Scholar
  10. Graham DL, Oram JF: Identification and characterization of a high density lipoprotein binding protein in cell membranes by ligand blotting. J Biol Chem 1987, 262:7439–7442PubMedGoogle Scholar
  11. Hansson GK, Holm J, Holm S, Fotev Z, Hedrich H-J, Fingerle J: T-lymphocytes inhibit the vascular response to injury. Proc Natl Acad Sci USA 1991, 88:10530–10534PubMedCrossRefGoogle Scholar
  12. Hansson GK, Jonasson L, Seifert PS, Stemme S: Immune mechanisms of atherosclerosis. Arteriosclerosis 1989, 9:567–571PubMedCrossRefGoogle Scholar
  13. von Hodenberg E, Heinen S, Howell K, Luley C., Kubier W, Bond H: Cholesterol efflux from macrophages mediated by high density lipoprotein subfractions, which differ principally in apolipoprotein A-I and apolipoprotein A-II ratios. Biochim Biophys Acta 1991, 1086:173–184Google Scholar
  14. Jonasson L, Hohn J, Skalli O, Bonders G, Hansson GK: Regional accumulation of T-cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986, 6:131–138PubMedCrossRefGoogle Scholar
  15. Kreuzer J, Bader J, Jahn L, Hautmann M, Kübier W, von Hodenberg E: Chemotaxis of the monocyte cell line U 937: Dependence on cholesterol and early mevalonate pathway products. Atherosclerosis 1991, 90:203–209PubMedCrossRefGoogle Scholar
  16. Loppnow H, Libby P: Proliferating or Interleukin 1 — activated human vascular smooth muscle cells secrete copious interleukin 6. J Clin Invest 1990, 85:731–738PubMedCrossRefGoogle Scholar
  17. Morrison J, Fidge NH, Tozuka M: Determination of the structural domain of apoAI recognized by high density lipoprotein receptors, J Biol Chem 1991, 266:18780–18785PubMedGoogle Scholar
  18. Nathan CF, Murray HW, Cohn Z: Current concepts: The macrophage as an effector cell. N Engl J Med 1980, 303:622–626PubMedCrossRefGoogle Scholar
  19. Oram JF, Johnson CJ, Brown TA: Interaction of high density lipoprotein with its receptor on cultured fibroblasts and macrophages. J Biol Chem 1987, 262:2405–2410PubMedGoogle Scholar
  20. Quinn, MT, Parthasarathy S, Fong LG, Steinberg D: Oxidatively modified LDL: A potential role in recruitment and retention of monocytes/macrophages in atherogenesis. Proc Natl Acad Sci USA 1987, 84:2995–2998PubMedCrossRefGoogle Scholar
  21. Rivers RPA, Hathaway WE, Weston WL: The endotoxin-induced coagulant activity of human monocytes. Br J Haematol 1975, 30:311–316PubMedCrossRefGoogle Scholar
  22. Rosenfeld ME, Ylä-Herttuala S, Lipton BA, Ord VA, Witztum J, Steinberg D: Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am J Pathol 140:291–300Google Scholar
  23. Rosenfeld ME, Carew TE, von Hodenberg E, Ross R, Steinberg D: Quantitative autoradiographic analysis of the distribution of the tyramine-cellobiose-LDL in atherosclerotic lesions from the WHHL rabbit Arteriosclerosis and Thrombosis 1992 (in press)Google Scholar
  24. Ross R, Glomset JA: The pathogenesis of atherosclerosis. N Engl J Med 1976, 295: 369–377PubMedCrossRefGoogle Scholar
  25. Ross R: The pathogenesis of atherosclerosis — an update. N Engl J Med 1986, 314:488–500PubMedCrossRefGoogle Scholar
  26. Rubin K, Tingstrom A, Hansson GK, Larsson E, Ronnstrand L, Klareskog L, ClaessonWelsh L, Heldin C-H, Fellstrom B, Terracio L: Induction of B-type PDGF receptors for platelet-derived growth factor in vascular inflammation:possible implications for development of vascular proliferative lesions. Lancet 1988, 1:1353–1356PubMedCrossRefGoogle Scholar
  27. Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM: The pathogenesis of atherosclerosis: An Overview. Clin Cardiol 1991, 14:1–16CrossRefGoogle Scholar
  28. Sevitt S: Platelets and foam cells in the evolution of atherosclerosis, histological and immunohistological studies of human lesions. Atherosclerosis 1986, 61:107–115PubMedCrossRefGoogle Scholar
  29. Shimokado K, Raines EW, Madtes DK, Barett TB, Benditt EP, Ross R: A significant part of macrophage derived growth factor consists of at least two forms of PDGF. Cell 1985, 43:277PubMedCrossRefGoogle Scholar
  30. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL: Beyond cholesterol: Modification of low-density lipoproteins that increase their atherogenicity. N Engl J Med 1989, 320:915–923PubMedCrossRefGoogle Scholar
  31. Takemura R, Werb Z: Secretory products of macrophages and their physiological functions. Am J Phys 1984, 246:C1–C9Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Eberhard von Hodenberg
    • 1
  • Eva Pestel
    • 1
  • Martina Hautmann
    • 1
  • Jörg Kreuzer
    • 1
  • Christoph Bode
    • 1
  • Wolfgang Kübler
    • 1
  1. 1.Department of CardiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations