New tools for the study of chromosome segregation and aneuploidy at the molecular level

  • J.-P. Charlieu
  • B. Marçais
  • A.-M. Laurent
  • G. Roizès
Conference paper
Part of the NATO ASI Series book series (volume 72)


The molecular mechanisms which allow the correct distribution of chromosomes during cell division are not yet well known. The centromere, because of its possible involvement in the attachment of sister chromatids and its participation in the formation of the kinetochore, may play an important role in these mechanisms. Trisomy 21 (Down syndrome, DS) provides a good model for studying aneuploidy resulting from the dysfunction of the chromosome distribution process. A possible means of analyzing the mechanisms leading to nondisjunction (NDJ) could be to determine the origin of the supernumerary chromosome 21 and to attempt to find some structural or physical characteristics of the potentially responsible centromere. This could be performed by using molecular tools which allow each of the two parental chromosomes 21 to be distinguished. Possible markers suitable for this purpose are DNA fragments that exhibit length polymorphisms.


Human Immunodeficiency Virus Type Down Syndrome Human Chromosome Centromeric Region Meiotic Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleixandre C., Miller D. A., Mitchell A. R., Warburton D. A., Gersen S. L., Disteche C, Miller O. J. (1987) p82H identifies sequences at every human centromeres. Hum. Genet. 77: 46–50.PubMedCrossRefGoogle Scholar
  2. Antonorakis S. E., Chakravarti A., Warren A. C., Slagenhaupt S. A., Wong C., Halloran S. L., Metaxotou C. (1986) Reduced recombination rate in chromosome 21 that have undergone nondisjunction. Cold Spring Harbor Symp. Quant. Biol. 51: 185–190.Google Scholar
  3. Bajnoczky K., Mehes K. (1988) Parental centromere separation sequence and aneuploidy in the offspring. Hum. Genet. 78: 286–288.PubMedCrossRefGoogle Scholar
  4. Bricarelli F. D., Pierluigi M., Perroni L., Grasso M., Arslanian A., Sacchi N. (1988) High efficiency in distribution of parental origin of nondisjunction in trisomy 21 by both cytogenetics and molecular polymorphisms. Hum. Genet. 79:124–127.PubMedCrossRefGoogle Scholar
  5. Broccoli D., Miller O. J., Miller D. A. (1990) Relationship of mouse minor satellite DNA to centromere activity. Cytogenet. Cell Genet. 54:182–186.PubMedCrossRefGoogle Scholar
  6. Charlieu J.-P., Murgue B., Laurent A.-M., Marçais B., Bellis M., Roizès G. (1992a) Discrimination between alpha-satellite DNA sequences from chromosomes 21 and 13 by using polymerase chain reaction. Genomics, in press. Google Scholar
  7. Charlieu J.-P., Laurent A.-M., Carter D. A., Bellis M., Roizès G. (1992b) 3′ Alu PCR: a simple and rapid method to isolate human polymorphic markers. Nucleic Acids Res. 20: 1333–1337.PubMedCrossRefGoogle Scholar
  8. Cherry L. M., Johnson D. A. (1987) Size variations in kinetochores of human chromosomes. Hum. Genet. 75: 155–158.PubMedCrossRefGoogle Scholar
  9. Choo K. H., Vissel B., Earle E. (1989) Evolution of alpha-satellite DNA on human acrocentric chromosomes. Genomics 5: 332–344.PubMedCrossRefGoogle Scholar
  10. Delattre O., Bernard A., Malfoy B., Marlhens F., Viegas-Péquignot E., Brossard C., Haguenhauer D., Creau-Goldberg N., N’Guyen Van Cong, Dutrillaux B., Thomas G. (1987) Isolation and characterization of an alphoid DNA sequence recently amplified on chromosome 3. Nucleic Acids Res. 15:8561.PubMedCrossRefGoogle Scholar
  11. Economou E. P., Bergen A. W., Warren A. C., Antonorakis S. E. (1990) The polydeoxyadenylate tract of Alu repetitive elements is polymorphic in the human genome. Proc. Natl. Acad. Sci. USA 87: 2951–2954.PubMedCrossRefGoogle Scholar
  12. Epstein N., Nahor O., Silver J. (1990) The 3′ end of Alu repeats are highly polymorphic. Nucleic Acids Res. 18:4634.PubMedCrossRefGoogle Scholar
  13. Erickson R. P., Glover T. W., Hall B. K., Witt M. (1991) Polymerase chain reaction with alphoid repeat primers in combination with Alu or LINEs primers generate chromosome-specific DNA fragments. Ann. Hum. Genet. 55: 199–211.PubMedCrossRefGoogle Scholar
  14. Gosden J., Hanratti D., Starling J., Fantes J., Mitchell A., Porteous D. (1991) Oligonucleotide primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization. Cytogenet. Cell Genet. 57:100–104.PubMedCrossRefGoogle Scholar
  15. Greig G. M., England S. B., Bedford H. M., Willard H. F. (1989) Chromosome-specific alpha-satellite DNA from the centromere of chromosome 16. Am. J. Hum. Genet. 45: 862–872.PubMedGoogle Scholar
  16. Hassold T. J., Jacobs P. A. (1984) Trisomy in man. Ann. Rev. Genet. 18: 69–97.PubMedCrossRefGoogle Scholar
  17. Hwu H. R., Roberts J., Davidson E., Britten R. (1986) Insertion and/or deletion of many repeated DNA sequences in human and higher ape evolution. Proc. Natl Acad. Sci. USA, 83: 3875–3879.PubMedCrossRefGoogle Scholar
  18. Jabs E. W., Goble C. A., Cutting G. R. (1989) Macromolecular organization of human centromeric regions reveals high frequency polymorphic macro DNA fragments. Proc. Natl. Acad. Sci. USA 86: 202–206.PubMedCrossRefGoogle Scholar
  19. Jorgensen, A. L., Bostock C. J., Bak A. L. (1986) Chromosome-specific subfamilies within human alphoid repetitive DNA. J. Mol. Biol. 187:185–196.PubMedCrossRefGoogle Scholar
  20. Jorgensen A. L., Bostock C. J., Bak A. L. (1987) Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. Proc. Natl. Acad. Sci. USA, 84: 1075–1079.PubMedCrossRefGoogle Scholar
  21. Koch J. E., Kolvraa S., Petersen K. B., Gregersen N., Bolund L. (1989) Oligonucleotide-priming methods for the chromosome-specific labelling of alpha-satellite DNA in situ. Chromosoma 98: 259–265.PubMedCrossRefGoogle Scholar
  22. Kwok S., Kellog D. E., McKinney N., Spasic D., Goda L., Levenson S., Sninsky J. J. (1991) Effect of primer-template mismatches on the polymerase chain reaction: Human Immunodeficiency Virus type 1 model studies. Nucleic Acids Res. 18: 999–1005.CrossRefGoogle Scholar
  23. Manuelidis L. (1978) Chromosomal localization of complex and simple repeated human DNAs. Chromosoma 66:1–21.PubMedCrossRefGoogle Scholar
  24. Marçais B., Bellis M., Gérard A., Pagès M., Boublik Y., Roizès G. (1991a) Structural organization and polymorphism of the alpha-satellite DNA sequences of chromosomes 13 and 21 as revealed by pulse field gel electrophoresis. Hum. Genet. 86: 311–316.PubMedGoogle Scholar
  25. Marçais B., Gérard A., Bellis M., Roizès G. (1991b) Taq I reveals two independant alphoid polymorphisms an human chromosomes 13 and 21. Hum. Genet. 86: 307–310.PubMedGoogle Scholar
  26. Marçais B., Charlieu J.-P., Allain B., Brun E., Bellis M., Roizès G. (1991c) On the mode of evolution of alpha satellite DNA in human populations. J. Mol. Evol. 33:42–48.PubMedCrossRefGoogle Scholar
  27. Masumoto H., Masukata, H., Muro Y., Nozaki N., Okasaki T. (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109: 1963–1973.PubMedCrossRefGoogle Scholar
  28. Meijer H., Hamers G. J. H., Jongbloed R. J. E., Vaes-Peeters G. P. M., Van der Hulst R. R. W. J., Geraedts J. P. M. (1989) Distribution of meiotic recombination along NDJ chromosome 21 in Down syndrome using cytogenetics and RFLP haplotyping. Hum. Genet. 83: 280–286.PubMedCrossRefGoogle Scholar
  29. Mikamo I., Kamiguchi Y. (1983) Primary incidences of spontaneous chromosomal anomalies and their origins and causal mechanisms in the chinese hamster. Mutat. Res. 108: 265–278.PubMedCrossRefGoogle Scholar
  30. Mitchell A. R., Gosden J. R., Miller D. A. (1985) A cloned sequence, p82H, of the alphoid repeated DNA family found at the centromere of all human chromosomes. Chromosoma 92: 369–377.PubMedCrossRefGoogle Scholar
  31. Mitchison T. J., Kirshner M. W. (1985) Properties of the kinetochore in vitro. I. Microtubule capture and ATP-dependant translocation. J. Cell. Biol. 101: 766–777.PubMedCrossRefGoogle Scholar
  32. Mitchison T., Hyman A. (1988) Kinetochores on the move. Nature 336: 200.PubMedCrossRefGoogle Scholar
  33. Nicklas R. B., Kubai D. F.(1985) Microtubules, chromosome movement and reorientation after chromosomes are detached from the spindle by micromanipulation. Chromosoma 92: 313–324.PubMedCrossRefGoogle Scholar
  34. Oakey R., Tyler-Smith C. (1990) Y chromosome haplotyping suggests that most European and Asian men are descended from one of two males. Genomics 7: 325–330.PubMedCrossRefGoogle Scholar
  35. Pellestor F. (1991a) Frequency and distribution of aneuploidy in human female gametes. Hum. Genet. 86:283–288.PubMedCrossRefGoogle Scholar
  36. Pellestor F. (1991b) Frequency and distribution of aneuploidy in human gametes according to their sex. Hum. Reproduction 6: 1252–1258.Google Scholar
  37. Perroni L., Dagua-Bricarelli F., Grasso M., Pierluigi M., Baldi M., Pedemonte C, Strigini P. (1990) Crossing over and chromosome 21 nondisjunction: a study of 60 families. Am. J. Med. Genet. 7:141–147.Google Scholar
  38. Rocchi M., Archidiacono N., Ward D., Baldini A. (1991) A human chromosome 9-specific alphoid DNA repeat spatially resolvable from satellite 3 DNA by fluorescent in situ hybridization. Genomics 9: 517–523.PubMedCrossRefGoogle Scholar
  39. Stewart G. D., Hassold T. J., Berg A., Watkins P., Tanzi R., Kurnit D. M. (1988) Trisomy 21 (Down syndrome): studying nondisjunction and meiotic recombination by using cytogenetic and molecular polymorphisms that span chromosome 21. Am. J. Hum. Genet. 42: 227–236.PubMedGoogle Scholar
  40. Vig B. K. (1984) Sequence of centromere separation, another mechanism for the origin of nondisjunction. Hum. Genet. 66: 239–243.PubMedCrossRefGoogle Scholar
  41. Warburton P. E., Willard H. F. (1990) Genomic analysis of sequence variations in tandemly repeated DNA. Evidence for localized homogeneous sequences domains within arrays of alpha-satellite DNA. J. Mol. Biol. 216: 3–16.PubMedCrossRefGoogle Scholar
  42. Warren A. C., Chakravarti A., Wong C., Slagenhaupt S. A., Halloran S. L., Watkins P. C., Metacoton C, Antonorakis S. E. (1987) Evidence for reduced recombination on the nondisjoined chromosome 21 in Down syndrome. Science 237: 652–654.PubMedCrossRefGoogle Scholar
  43. Waye J. S., Sharon J. D., Pinkel D., Kenwrick S., Patterson M., Davis K. E., Willard H. F. (1987) Chromosome-specific alpha-satellite DNA from human chromosome 1: hierarchical structure and genomic organization of a polymorphic domain spanning several hundred kilobase pairs of centromeric DNA. Genomics 1:43–51.PubMedCrossRefGoogle Scholar
  44. Willard H. F., Waye J. S. (1987) Hierarchical order in chromosome-specific human alpha-satellite DNA. Trends Genet. 3:192–198.CrossRefGoogle Scholar
  45. Zuliani G., Hobbs H. H. (1990) A high frequency of length polymorphisms in repeated sequences adjacent to Alu sequences. Am. J. Hum. Genet. 46: 963–969.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J.-P. Charlieu
    • 1
  • B. Marçais
    • 1
  • A.-M. Laurent
    • 1
  • G. Roizès
    • 1
  1. 1.Institut de BiologieCNRS UPR 9008 & INSERM U 249Montpellier cedexFrance

Personalised recommendations