SUP35 and SUP45 Genes Code for Ribosome-Bound Proteins Involved in the Control of Translational Fidelity in Yeast

  • Michael D. Ter-Avanesyan
  • Svetlana A. Didichenko
  • Vitaly V. Kushnirov
  • Adilya R. Dagkesamanskaya
Part of the NATO ASI Series book series (volume 71)


The study of suppressor mutations that affect translational fidelity provides an efficient approach for identifying new components of the translational machinery in eukaryotes. Some of the identified genes controlling fidelity in lower eukaryotes presumably code for ribosomal proteins (Dequard-Chablat et al, 1986; All-Robyn et al, 1990; Hinnebusch and Liebman, 1991) and translation factors (Sandbaken and Culbertson, 1988; Kushnirov et al, 1988; Breining and Piepersberg, 1986). However, functions of the majority of these genes have not been established.


Suppressor Mutation SUP35 Gene Translational Fidelity Sucrose Gradient Fraction Sup35 Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. All-Robyn, JA., Brown, N., Otaka, E. and Liebman, S. (1990) Sequence and functional similarity between a yeast ribosomal protein and the E. coli S5 ram protein. Mol. Cell. Biol. 10: 6544–6553.PubMedGoogle Scholar
  2. Breining, P. and Piepersberg, W. (1986) Yeast omnipotent suppressor SUP1(SUP45): nucleotide sequence of the wild type and a mutant gene. Nucleic Acids Res. 4: 5187–5197.CrossRefGoogle Scholar
  3. Chernoff, Y.O., Derkach, I.L., Dagkesamanskaya, A.R., Tichomirova, V.L., TerAvanesyan, M.D. and Inge-Vechtomov, S.G. (1988) Nonsense-suppression caused by the amplification of translation protein factor gene. Dokl. Acad. Nauk SSSR (Proc. USSR Acad. Sci, in Russian) 301: 1227–1229.Google Scholar
  4. Cox, B.S. (1965) psi, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20: 505–521.CrossRefGoogle Scholar
  5. Cox, B.S. (1977) Allosuppressors in yeast. Genet. Res. 30: 159–178.CrossRefGoogle Scholar
  6. Cox, B.S., Tuite, M.F. and McLaughlin, C.S. (1988) The [psi] factor of yeast: a problem in inheritance. Yeast 4: 159–178.PubMedCrossRefGoogle Scholar
  7. Cox, B.S., Tuite, M.F. and Mundy, CJ. (1980) Reversion from suppression to non-suppression in SUQ5 [psi +] strains of yeast: classification of mutations. Genetics 95: 589–609.PubMedGoogle Scholar
  8. Culbertson, M.R, Gaber, R.F. and Cummins, C.M. (1982) Frameshift suppression in Saccharomyces cerevisiae. III. Isolation and genetic properties of nongroup-specific suppressors. Genetics 102: 361–378.Google Scholar
  9. Dagkesamanskaya, A.R. and Ter-Avanesyan, M.D. (1991) Interaction of the yeast omnipotent suppressors SUP1(SUP45) and SUP2(SUP35) with non-Mendelian factors. Genetics 128: 513–520.PubMedGoogle Scholar
  10. Dequard-Chablat, M., Coppin-Raynal, E., Picard-Bennoun, M. and Madjar, J.J. (1986) At least seven rubosomal proteins are involved in the control of translational accuracy in an eucaryotic organisms. J. Mol. Biol. 190: 167–175.PubMedCrossRefGoogle Scholar
  11. Didichenko, S.A., Ter-Avanesyan, M.D. and Smirnov, V.N. (1991) Ribosome-bound EF-1-like protein of yeast Saccharomyces cerevisiae. Eur. J. Biochem. 198: 705–711.PubMedCrossRefGoogle Scholar
  12. Eustice, D.C., Walkern, L.P., Wilhelm, J.M. and Sherman, F. (1986) Altered 40S ribosomal subunits in omnipotent suppressors of yeast. J. Mol. Biol. 188: 207–214.PubMedCrossRefGoogle Scholar
  13. Hawthorne, D.C. and Leupold, L. (1974) Suppressor mutations in yeast. Curr. Top. Microbiol. Immunol. 64: 1–47.PubMedCrossRefGoogle Scholar
  14. Henshaw, E.C, Guiney, D.G. and Hirsch, C.A. (1973) Ribosome cycle in mammalian protein synthesis. Place of monomeric ribosomes and ribosomal subunits in the cycle. J. Biol. Chem. 25: 4367–4376.Google Scholar
  15. Himmelfarb, HJ., Maicas, E. and Friesen, J.D. (1985) Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product. Mol. Cell. Biol. 5: 816–822.PubMedGoogle Scholar
  16. Hinnebusch, A.G. and Liebman, S.W. (1991) Protein synthesis and translational control in Saccharomyces cerevisiae. In The Molecular and Cellular Biology of the Yeast Saccharomyces., Volume 1 (Broach, J.R., Pringle, J.R., and Jones, E.W, eds), pp. 627–735. Cold Spring Habor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  17. Hirsch, CA, Cox, MA., Venrooij, van WJW. and Henshaw, E.C. (1973) The ribosome cycle in mammalian protein synthesis. Association of the native smaller ribosomal submits with protein factors. J. Biol. Chem. 25: 4377–4385.Google Scholar
  18. Hoshino, S.-i., Miyazawa, H, Enomoto, T., Hanaoka, F., Kikuchi, Y., Kikuchi, A. and Ui, M. (1989) A human homologue of the yeast GST1 gene codes for a GTP-binding protein and is expressed in a proliferation-dependent manner in mammalian cells. EMBO J. 8: 3807–3814.PubMedGoogle Scholar
  19. Inge-Vechtomov, S.G. and Andrianova, V.M. (1970) Recessive super-suppressors in yeast. Genetika (in Russian) 6: 103–115.Google Scholar
  20. Kikuchi, Y., Shimatake, H. and Kikuchi, A. (1988) A yeast gene required for the G1 to S transition encodes a protein containing an A-kinase targed site and GTPase domain. EMBO J. 7: 1175–1182.PubMedGoogle Scholar
  21. Kushnirov, V.V., Ter-Avanesyan, M.D., Didichenko, S.A., Smirnov, V.N., Chernoff, Y.O., Derkatch, I.L., Novikova, O.N., Inge-Vechtomov, S.G., Neistat, M.A. and Tolstorukoy, I.I. (1990) Divergence and conservation of SUP2(SUP35) gene of yeasts Pichia pinus and Saccharomyces cerevisiae. Yeast 6, 461–472.PubMedCrossRefGoogle Scholar
  22. Kushnirov, V.V., Ter-Avanesyan, M.D., Telckov, M.V., Surguchov, A.P. Smirnov, V.N. and Inge-Vechtomov, S.G. (1988) Nucleotide sequence of the SUP2(SUP35) gene of yeast Saccharomyces cerevisiae. Gene 66: 45–54.PubMedCrossRefGoogle Scholar
  23. McCready, SJ. and Cox, B.S. (1973) Antisuppressors in yeast. Mol. Gen. Genet. 124: 305–320.PubMedCrossRefGoogle Scholar
  24. McCready, S.J., Cox, B.S. and McLaughlin, C.S. (1977) The extra-chromosomal control of nonsense suppression in yeast: an analysis of the elimination of [psi +] in the presence of a nuclear gene PNM. Mol. Gen. Genet. 150: 265–270.PubMedCrossRefGoogle Scholar
  25. Pocklington, M.J., Johnston, L., Jenkins, J.R. and Orr, E. (1990) The omnipotent suppressor SUP45 affects nucleic acid metabolism and mitochondrial structure. Yeast 6: 441–450.PubMedCrossRefGoogle Scholar
  26. Safer, B., Jagus, R. and Kemper, W.M. (1979) Analysis of initiation factor function in highly fractionated and unfractionated reticulocyte lysate systems. Methods in Enzymology, 60: 61–87.PubMedCrossRefGoogle Scholar
  27. Sandbaken, M.G. and Culbertson, M.R. (1988) Mutations in elongation factor EF-1 affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae. Genetics 120: 923–934.PubMedGoogle Scholar
  28. Surguchov, A.P., Smirnov, V.N., Ter-Avanesyan, M.D. and Inge-Vechtomov, S.G. (1984) Ribosomal suppression in eukaryotes. Physicochem. Biol. Rev. 4: 147–205.Google Scholar
  29. Tuite, M.F., Izgu, F., Grant, C.M. and Crouzet, M. (1988) Genetic control of tRNA suppression in Saccharomyces cerevisiae: allosuppressors. NATO ASI Series, Volume H14: 393–402.Google Scholar
  30. Wilson, P.G. and Culbertson, M.R. (1988) SUF12 suppressor protein of yeast. A fusion protein related to the EF1 family of elongation factor. J. Mol. Biol. 199: 559–573.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michael D. Ter-Avanesyan
    • 1
  • Svetlana A. Didichenko
    • 1
  • Vitaly V. Kushnirov
    • 1
  • Adilya R. Dagkesamanskaya
    • 1
  1. 1.Institute of Experimental CardiologyCardiology Research CenterMoscowRussia

Personalised recommendations