Advertisement

RNA14 and RNA15, Two Proteins Regulating mRNA Stability in Saccharomyces Cerevisiae

  • A. Petitjean
  • L. Minvielle-Sebastia
  • E. Mandart
  • N. Bonneaud
  • F. Lacroute
Conference paper
Part of the NATO ASI Series book series (volume 71)

Abstract

In S. cerevisiae, thermosensitive mutations in the unlinked genes RNA14 and RNA15 cause very similar phenotypes once the cells are shifted to the non permissive growth temperature. The length of the mRNA poly(A) tails is shortened and the mRNA stability is strongly decreased whilst the polymerase II transcription rate is only slightly modified in an allelic-dependent manner (Bloch et al., 1978, Minvielle-Sebastia et al., 1991). Moreover there is in both mutants a significant increase of monosomes concomitant with a strong reduction in the polysome population (A. Petitjean, unpublished results). This could either reflect the mRNA instability or a more specific impairment of these mutants in translation initiation (Petersen and Mc Laughlin, 1974).

Keywords

Restrictive Temperature Rna14 Mutant RNA15 Protein mRNA Decay Rate mRNA Poly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argos, P. (1988). A sequence motif in many polymerases. Nucleic Acids Res. 16, 9909–9916PubMedCrossRefGoogle Scholar
  2. Bloch, J. C, Perrin, F. and Lacroute, F. (1978). Yeast temperature-sensitive mutants impaired in processing of poly(A)-containing RNAs. Mol. Gen. Genet. 165, 123–127PubMedCrossRefGoogle Scholar
  3. Erdmann, R., Wiebel, F. F., Flessau, A., Rytka, J., Beyer, A., Frölich, K. and Kunau, W. (1991). PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64, 499–510PubMedCrossRefGoogle Scholar
  4. Frölich, K., Fries, H., Rüdiger, M., Erdmann, R., Botstein, D. and Mecke, D. (1991). Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J. Cell. Biol. 114, 443–453CrossRefGoogle Scholar
  5. Garfinkel, D. J., Mastrangelo, M. F., Sanders, N. J., Shafer, B. K., and Strathern, J. N. (1988). Transposon tagging using Ty elements in yeast. Genetics 120, 95–108PubMedGoogle Scholar
  6. Itoh, T. (1988). Complete nucleotide sequence of the ribosomal ‘A’ protein operon from the archaebacterium, Halobium halobium. Eur. J. Biochem. 176, 297–303PubMedCrossRefGoogle Scholar
  7. Kuwano, Y., Olvera, J. and Wool, I. G. (1991). The primary structure of rat ribosomal protein L38. Biochem. Biophys. Res. Commun. 175, 551–555PubMedCrossRefGoogle Scholar
  8. Lingner, J., Kellerman, J. and Keller, W. (1991). Cloning and expression of the essential gene for poly(A) polymerase from 5. cerevisiae. Nature 354, 496–498PubMedCrossRefGoogle Scholar
  9. Minvielle-Sebastia-Sebastia, L., Winsor, B., Bonneaud, N. and Lacroute, F. (1991). Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol. Cell. Biol. 11, 3075–3087Google Scholar
  10. Moir, D., Steward, S. E., Osmond, B. C. and Botstein, D. (1982). Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 100, 547–563PubMedGoogle Scholar
  11. Petersen, N. S. and McLaughlin, C. S. (1974). Polysome metabolism in protein synthesis mutants of yeast. Mol. Gen. Genet. 129, 189–200PubMedCrossRefGoogle Scholar
  12. Post, L. E., Strycharz, G. D., Nomura, M., Lewis, H. and Denis, P. P. (1979). Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 76, 1697–1701PubMedCrossRefGoogle Scholar
  13. Raabe, T., Bollum, F. J. and Manley, J. L. (1991). Primary structure and expression of bovine poly(A) polymerase. Nature 353, 229–239PubMedCrossRefGoogle Scholar
  14. Shibuya, H., Irie, K., Ninomiya-Tsuji, J., Goebl, M., Taniguchi, T. and Matsumoto, K. (1992). New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature 357, 700–702PubMedCrossRefGoogle Scholar
  15. Swaffield, J. C., Bromberg, J. F. and Johnston, S. A. (1992). Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 357, 698–700PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. Petitjean
    • 1
  • L. Minvielle-Sebastia
    • 1
  • E. Mandart
    • 1
  • N. Bonneaud
    • 1
  • F. Lacroute
    • 1
  1. 1.Centre de Génétique MoléculaireLaboratoire propre du CNRS associé à l’Université P. et M. CurieGif-sur-Yvette CedexFrance

Personalised recommendations