Positive Control of Translation in Organellar Genetic Systems

  • Thomas D. Fox
  • Zonghou Shen
Part of the NATO ASI Series book series (volume 71)


The expression of genes in the mitochondria and chloroplasts of eucaryotic cells is, in many cases, modulated in response to environmental factors. In the case of yeast mitochondria, gene expression is lowered in the absence of oxygen (Woodrow and Schatz 1979) and/or in the presence of glucose (Falcone et al. 1983). In the case of chloroplasts, gene expression is dependent on the presence of light, in most cases (Mullet 1988). In both of these organellar systems, available genetic and physiological evidence indicates that the expression of many genes is dependent upon mRNA-specific translational activators, and that these activators may play a role in modulating gene expression.


Saccharomyces Cerevisiae Nuclear Gene Glucose Repression Diploid Strain Yeast Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman SH, Gatti DL, Gellefors P, Douglas MG, Tzagoloff A (1991) ATP13. a nuclear gene of Saccharomyces cerevisiae essential for the expression of subunit 9 of the mitochondrial ATPase. FEBS Lett. 278: 234–238PubMedCrossRefGoogle Scholar
  2. Altuvia S, Locker-Giladi H, Koby S, Ben-Nun O, Oppenheim AG (1987) RNase III stimulates the translation of the c111 gene of bacteriophage λ. Proc. Natl. Acad. Sci. USA 84: 6511–6515PubMedCrossRefGoogle Scholar
  3. Cabrai F, Schatz G (1978) Identification of cytochrome c oxidase subunits in nuclear yeast mutants lacking the functional enzyme. J. Biol. Chem. 253: 4396–4401Google Scholar
  4. Costanzo MC, Fox TD (1986) Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of a specific mitochondrial mRNA. Mol. Cell. Biol. 6: 3694–3703PubMedGoogle Scholar
  5. Costanzo MC, Fox TD (1988) Specific translational activation by nuclear gene products occurs in the 5′ untranslated leader of a yeast mitochondrial mRNA. Proc. Natl. Acad. Sci. USA 85: 2677–2681PubMedCrossRefGoogle Scholar
  6. Costanzo MC, Fox TD (1990) Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu. Rev. Genet. 24: 91–113PubMedCrossRefGoogle Scholar
  7. Costanzo MC, Seaver EC, Fox TD (1986) At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J. 5: 3637–3641PubMedGoogle Scholar
  8. Costanzo MC, Seaver EC, Fox TD (1989) The PET54 gene of Saccharomyces cerevisiae: Characterization of a nuclear gene encoding a mitochondrial translational activator and subcellular localization of its product. Genetics 122: 297–305PubMedGoogle Scholar
  9. Danon A, Mayfield SPY (1991) Light regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. EMBO J. 10: 3993–4001PubMedGoogle Scholar
  10. Decoster E, Simon M, Hatat D, Faye G (1990) The MSS51 gene product is required for the translation of the C O X1 mRNA in yeast mitochondria. Mol. Gen. Genet. 224: 111–118PubMedCrossRefGoogle Scholar
  11. Dieckmann CL, Tzagoloff A (1985) Assembly of the mitochondrial membrane system: CBP6, a yeast nuclear gene necessary for the synthesis of cytochrome b. J. Biol. Chem. 260: 1513–1520PubMedGoogle Scholar
  12. Ebner E, Mason TL, Schatz G (1973) Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. II. Effect of nuclear and extrachromosomal mutations on the formation of cytochrome ç oxidase. J. Biol. Chem. 248: 5369–5378Google Scholar
  13. Falcone C, Agostinelli M, Frontali L (1983) Mitochondrial translation products during release from glucose repression in Saccharomyces cerevisiae. J. Bacteriol. 153: 1125–1132PubMedGoogle Scholar
  14. Folley LS, Fox TD (1991) Site-directed mutagenesis of a Saccharomyces cerevisiae mitochondrial translation initiation codon. Genetics 129: 659–668PubMedGoogle Scholar
  15. Fox TD (1987) Natural variation in the genetic code. Annu. Rev. Genet. 21: 67–91PubMedCrossRefGoogle Scholar
  16. Fox TD, Costanzo MC, Strick CA, Marykwas DL, Seaver EC, Rosenthal JK (1988) Translational regulation of mitochondrial gene expression by nuclear genes of Saccharomyces cerevisiae. Phil. Trans. Royal Soc. Lond. P 319: 97–105CrossRefGoogle Scholar
  17. Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO, Costanzo MC (1991) Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 194: 149–165PubMedCrossRefGoogle Scholar
  18. Haffter P, Fox TD (1992) Suppression of carboxy-terminal truncations of the yeast mitochondrial mRNA-specific translational activator PET122 by mutations in two new genes, MRP17 and PET127. Mol. Gen. Genet, in pressGoogle Scholar
  19. Haffter P, McMullin TW, Fox TD (1990) A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria. Genetics 125: 495–503PubMedGoogle Scholar
  20. Haffter P, McMullin TW, Fox TD (1991) Functional interactions among two yeast mitochondrial ribosomal proteins and an mRNA-specific translational activator. Genetics 127: 319–326PubMedGoogle Scholar
  21. Jensen KH, Herrin DL, Plumley FG, Schmidt GW (1986) Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation. J. Cell Biol. 103: 1315–1325PubMedCrossRefGoogle Scholar
  22. Kloeckener-Gruissem B, McEwen JE, Poyton RO (1987) Nuclear functions required for cytochrome c. oxidase biogenesis in Saccharomyces cerevisiae: multiple trans-acting nuclear genes exert specific effects on the expression of each of the cytochrome c. oxidase subunits encoded on mitochondrial DNA. Curr. Genet. 12: 311–322Google Scholar
  23. Kloeckener-Gruissem B, McEwen JE, Poyton RO (1988) Identification of a third nuclear protein-coding gene required specifically for posttranscriptional expression of the mitochondrial COX3 gene in Saccharomyces cerevisiae. J. Bacteriol. 170: 1399–1402PubMedGoogle Scholar
  24. Körte A, Michaelis U, Lottspeich F, Rödel G (1991) Over-expression, purification and determination of the proteolytic processing site of the yeast mitochondrial CBS1 protein. Curr. Genet. 20: 87–90PubMedCrossRefGoogle Scholar
  25. Kuchka MR, Mayfield SP, Rochaix J-D (1988) Nuclear mutations specifically affect the synthesis and/or degradation of chloroplast-encoded D2 polypeptide of photosystem II in Chlamydomonas reinhardtii. EMBO J. 7: 319–324PubMedGoogle Scholar
  26. Marykwas DL (1991) Environmental control of the yeast nuclear gene PET494. a specific activator of mitochondrial translation. Ph.D. Thesis, Cornell UniversityGoogle Scholar
  27. Marykwas DL, Fox TD (1989) Control of the Saccharomyces cerevisiae regulatory gene PET494; transcriptional repression by glucose and translational induction by oxygen. Mol. Cell. Biol. 9: 484–491PubMedGoogle Scholar
  28. McMullin TW, Haffter P, Fox TD (1990) A novel small subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol. Cell. Biol. 10: 4590–4595PubMedGoogle Scholar
  29. Metz JG, Miles D (1982) Use of a nuclear mutant of maize to identify components of photosystem II. Biochim. Biophys. Acta 681: 95–102CrossRefGoogle Scholar
  30. Michaelis U, Körte A, Rödel G (1991) Association of cytochrome b. translational activator proteins with the mitochondrial membrane: implications for cytochrome b expression in yeast. Mol. Gen. Genet. 230: 177–185Google Scholar
  31. Michaelis U, Rödel G (1990) Identification of CBS2 as a mitochondrial protein in Saccharomyces cerevisiae. Mol. Gen. Genet. 223: 394–400PubMedGoogle Scholar
  32. Michaelis U, Schlapp T, Rödel G (1988) Yeast nuclear gene CBS2. required for translational activation of cytochrome b. encodes a basic protein of 45 kDa. Mol. Gen. Genet. 214: 263–270Google Scholar
  33. Mullet JE (1988) Chloroplast development and gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 475–502CrossRefGoogle Scholar
  34. Ohmen JD, Kloeckener-Gruissem B, McEwen JE (1988) Molecular cloning and nucleotide sequence of the nuclear PET122 gene required for expression of the mitochondrial COX3 gene in S. cerevisiae. Nucleic Acids Res. 16: 10783–10802PubMedCrossRefGoogle Scholar
  35. Payne MJ, Schweizer E, Lukins HB (1991) Properties of two nuclear pet mutants affecting expression of the mitochondrial oli1 gene of Saccharomyces cerevisiae. Curr. Genet. 19: 343–351PubMedCrossRefGoogle Scholar
  36. Poutre CG, Fox TD (1987) PET111. a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115: 637–647Google Scholar
  37. Rochaix J-D, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J, Bennoun P (1989) Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psb C gene product in Chlamydomonas reinhardtii. EMBO J. 8: 1013–1021PubMedGoogle Scholar
  38. Rödel G (1986) Two yeast nuclear genes, CBS1 and CBS2. are required for translation of mitochondrial transcripts bearing the 5′— untranslated COB leader. Curr. Genet. 11: 41–45Google Scholar
  39. Rödel G, Fox TD (1987) The yeast nuclear gene CBS 1 is required for translation of mitochondrial mRNAs bearing the cob 5′— untranslated leader. Mol. Gen. Genet. 206: 45–50PubMedCrossRefGoogle Scholar
  40. Rödel G, Körte A, Kaudewitz F (1985) Mitochondrial suppression of a yeast nuclear mutation which affects the translation of the mitochondrial apocytochrome b transcript. Curr. Genet. 9: 641–648PubMedCrossRefGoogle Scholar
  41. Rödel G, Michaelis U, Forsbach V, Kreike J, Kaudewitz F (1986) Molecular cloning of the yeast nuclear genes CBS1 and CBS2. Curr. Genet. 11: 47–53PubMedCrossRefGoogle Scholar
  42. Strick CA, Fox TD (1987) Saccharomyces cerevisiae positive regulatory gene PET111 encodes a mitochondrial protein that is translated from an mRNA with a long 5’ leader. Mol. Cell. Biol. 7: 2728–2734PubMedGoogle Scholar
  43. Woodrow G, Schatz G (1979) The role of oxygen in the biosynthesis of cytochrome c oxidase of yeast mitochondria. J. Biol. Chem. 254: 6088–6093PubMedGoogle Scholar
  44. Wulczyn FG, Kahmann R (1991) Translational stimulation: RNA sequence and structure requirements for binding of com protein. Cell 65: 259–269PubMedCrossRefGoogle Scholar
  45. Zennaro E, Grimaldi L, Baldacci G, Frontali L (1985) Mitochondrial transcription and processing of transcripts during release from glucose repression in “resting cells” of Saccharomyces cerevisiae Eur. J. Biochem. 147: 191–196Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Thomas D. Fox
    • 1
  • Zonghou Shen
    • 1
    • 2
  1. 1.Section of Genetics and DevelopmentCornell UniversityIthacaUSA
  2. 2.Department of BiologyWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations