Skip to main content

Clinical Implications of Antibiotic-Induced Endotoxin Liberation

  • Conference paper
Book cover Yearbook of Intensive Care and Emergency Medicine 1993

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 1993 ((YEARBOOK,volume 1993))

  • 125 Accesses

Abstract

Gram-negative bacteria cause the majority of fatal infections in developed countries, usually in association with septic shock or meningitis. The pathophysiology of gram-negative bacterial infection is thought to be mediated in large part by lipopolysaccharide (LPS), a toxin elaborated by all species of gram-negative bacteria [1]. LPS is a structural component of the gram-negative bacterial cell envelope, and is therefore known as endotoxin. Gram-positive bacteria do not synthesize LPS. The lack of LPS in the cell envelope of grampositive organisms versus its presence in the gram-negative envelope accounts for the difference in staining characteristics of these two major categories of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morrison DC, Ryan JL (1987) Endotoxins and disease mechanisms. Ann Rev Med 38: 417–432

    Article  PubMed  CAS  Google Scholar 

  2. Bryceson ADM (1976) Clinical pathology of the Jarisch-Herxheimer reaction. J Infect Dis 133: 696–704

    Article  PubMed  CAS  Google Scholar 

  3. Gelfand JA, Elin RJ, Berry FW Jr, Frank MM (1976) Endotoxemia associated with the Jarisch-Herxheimer reaction. N Engl J Med 295: 211–213

    Article  PubMed  CAS  Google Scholar 

  4. Young EJ, Weingarten NM, Baughn RE, Duncan WC (1982) Studies on the pathogenesis of the Jarisch-Herxheimer reaction: Development of an animal model and evidence against a role for classical endotoxin. J Infect Dis 146: 606–615

    Google Scholar 

  5. Hardy PH Jr, Levin J (1983) Lack of endotoxin in Borrelia hispanica and Treponema pallidum. Proc Soc Exp Biol Med 174: 47–52

    PubMed  CAS  Google Scholar 

  6. Shenep JL, Feldman F, Thornton D (1986) Evaluation for endotoxemia in patients receiving penicillin therapy for secondary syphilis. JAMA 256: 388–390

    Article  PubMed  CAS  Google Scholar 

  7. Spink WW, Braude AI, Castaneda MR, Goytia RS (1948) Aureomycin therapy in human brucellosis due to Brucella melitensis. JAMA 138: 1145–1148

    Article  CAS  Google Scholar 

  8. Abernathy RS, Spink WW (1958) Studies with brucella endotoxin in humans: The significance of susceptibility to endotoxin in the pathogenesis of brucellosis. J Clin Invest 37: 219–231

    Google Scholar 

  9. Ziegler EJ, Fisher CJ Jr, Sprung CL, et al. (1991) Treatment of gram–negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. N Engl J Med 324: 429–436

    Article  PubMed  CAS  Google Scholar 

  10. Greenman RL, Schein RMH, Martin MA, et al. (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram–negative sepsis. JAMA 266: 1097–1102

    Article  PubMed  CAS  Google Scholar 

  11. Hopkin DAB (1978) Too-rapid destruction of gram–negative organisms. Lancet (Letter) 2: 603–604

    Google Scholar 

  12. Hopkin DAB (1978) Frapper fort out frapper doucement: A gram-negative dilemma. Lancet 2: 1193–1194

    PubMed  CAS  Google Scholar 

  13. Crutchley MJ, Marsh DG, Cameron J (1967) Free endotoxin. Nature 214: 1052

    Google Scholar 

  14. Jorgensen JH, Smith RF (1974) Measurement of bound and free endotoxin by the Limulus assay. Proc Soc Exp Biol Med 146: 1024–1031

    PubMed  CAS  Google Scholar 

  15. Andersen BM, Solberg O (1980) The endotoxin-liberating effect of antibiotics in meningococci in vitro. Acta Path Microbiol Scand 88: 231–236

    CAS  Google Scholar 

  16. Goto H, Nakamura S (1980) Liberation of endotoxin from Escherichia coli by addition of antibiotics. Japan J Exp Med 50: 35–43

    CAS  Google Scholar 

  17. Flynn PM, Shenep JL, Gigliotti F, Davis DS, Hildner WK (1988) Immunolabeling of lipopolysaecharide liberated from antibiotic–treated Escherichia coli. Infect Immun 56: 2760–2762

    PubMed  CAS  Google Scholar 

  18. Tesh VL, Duncan RL Jr, Morrison DC (1986) The ineraction of Escherichia coli with normal human serum: The kinetics of serum–mediated lipopolysaecharide release and its dissociation from bacterial killing. J Immunol 137: 1329–1335

    Google Scholar 

  19. Simon DM, Koenig G, Trenholme GM (1991) Differences in release of tumor necrosis factor from THP–1 cells stimulated by filtrates of antibiotic-killed Escherichia coli. J Infect Dis 164: 800–802

    Article  PubMed  CAS  Google Scholar 

  20. Andersen BM, Solberg O (1980) Release of endotoxin from Neisseria meningitidis. A short survey with a preliminary report on virulence in mice. NIPH Annais 3: 49–55

    Google Scholar 

  21. Demonthy J, De Graeve J (1982) Release of endotoxic lipopolysaceharide by sensitive strains of Escherichia coli submitted to the bactericidal action of human serum. Med Microbiol Immunol 170: 265–277

    Article  Google Scholar 

  22. Andersen BM, Soberg O (1984) Effect of benzylpenicillin in mice infected with endotoxin-liberating or non-liberating variant strains of Neisseria meningitidis. Scan J Infect Dis 16: 257–266

    Article  CAS  Google Scholar 

  23. Shenep JL, Mogan KA (1984) Kinetics of endotoxin release during antibiotic therapy for experimental gram-negative bacterial sepsis. J Infect Dis 150: 380–388

    Article  PubMed  CAS  Google Scholar 

  24. Walterspiel JW, Kaplan SL, Mason EO Jr (1986) Protective effect of subinhibitory polymyxin B alone and in combination with ampicillin for overwhelming Haemophilus influenzae type b infection in the infant rat: Evidence for in vivo and in vitro release of free endotoxin after ampicillin treatment. Pediatr Res 20: 237–241

    Google Scholar 

  25. Almdahl SM, Osterud B (1987) Effect of antibiotics on gram–negative sepsis in the rat. Lack of endotoxin burst. Acta Chir Scan 153: 283–286

    Google Scholar 

  26. Shenep JL, Flynn PM, Barrett FF, Stidham GL, Westenkirchner DF (1988) Serial quantitation of endotoxemia and bacteremia during therapy for gram–negative bacterial sepsis. J Infect Dis 157: 565–568

    Article  PubMed  CAS  Google Scholar 

  27. Dofferhoff ASM, Bom VJJ, de Vries-Hospers HG, et al. (1992) Patterns of cytokines, plasma endotoxin, Plasminogen activator inhibitor, and acute-phase proteins during the treatment of severe sepsis in humans. Crit Care Med 20: 185–192

    Article  PubMed  CAS  Google Scholar 

  28. Täuber MG, Shibl AM, Hackbarth CJ, Larrick JW, Sande MA (1987) Antibiotic therapy, endo–toxin concentration in cerebrospinal fluid, and brain edema in experimental Escherichia coli meningitis in rabbits. J Infect Dis 156: 456–461

    Article  PubMed  Google Scholar 

  29. Mustafa MM, Ramilo O, Mertsola J, et al. (1989) Modulation of inflammation and cachectin activity in relation to treatment of experiment Hemophilus influenzae type b meningitis. J Infect Dis 160: 818–825

    Article  PubMed  CAS  Google Scholar 

  30. Berman NS, Siegel SE, Nachum R, Lipsey A, Leedom J (1976) Cerebrospinal fluid endotoxin concentrations in gram-negative bacterial meningitis. J Pediatr 88: 553–556

    Article  PubMed  CAS  Google Scholar 

  31. Arditi M, Ables L, Yogev R (1989) Cerebrospinal fluid endotoxin levels in children with H. influenzae menirigitis before and after administration of intravenous ceftriaxone. J Infect Dis 160: 1005–1011

    Article  PubMed  CAS  Google Scholar 

  32. Mustafa MM, Mertsola J, Ramilo O, Säez-Llorens X, Risser RC, McCracken GH Jr (1989) Increased endotoxin and interleukin-lß concentrations in cerebrospinal fluid of infants with coliform meningitis and ventriculitis associated with intraventricular gentamicin therapy. J Infect Dis 160: 891–895

    Article  PubMed  CAS  Google Scholar 

  33. Shenep JL, Barton RP, Mogan KA (1985) Role of antibiotic class in the rate of liberation of endotoxin during therapy for experimental gram–negative bacterial sepsis. J Infect Dis 151: 1012–1018

    Article  PubMed  CAS  Google Scholar 

  34. Cohen J, McConnell JS (1986) Release of endotoxin from bacteria exposed to Ciprofloxacin and its prevention with polymyxin B. Eur J Clin Microbiol 5: 13–17

    Article  PubMed  CAS  Google Scholar 

  35. Jackson JJ, Kropp H (1992) ß–lactam antibiotic–induced release of free endotoxin: In vitro comparison of penicillin-binding protein (PBP) 2-specific imipenem and PBP 3-specific ceftazidime. J Infect Dis 165: 1033–1041

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shenep, J.L. (1993). Clinical Implications of Antibiotic-Induced Endotoxin Liberation. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1993. Yearbook of Intensive Care and Emergency Medicine 1993, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84904-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84904-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56463-8

  • Online ISBN: 978-3-642-84904-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics