Skip to main content

Intestinal Permeability and Bacterial Translocation: Their Role in the Development of MOF

  • Conference paper
  • 121 Accesses

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 1993 ((YEARBOOK,volume 1993))

Abstract

Today multiple organ failure (MOF) represents the cause number one of death in a surgical intensive care unit (ICU). However, the basic pathophysiology of this Syndrome still remains to be elucidated [1], Hypotheses on the pathogenesis of MOF include “generalized inflammation” resulting from an excessive activation of endogenous inflammatory mediators and cells [2], and “the gut as the motor of MOF”, implicating the role of translocating gut bacteria and endotoxins triggering the septic State [3]. In this respect, alterations of intestinal permeability (IP) have been shown to be associated with translocation of intraluminally present toxic substances and micro-organisms. The role of splanchnic ischemia, inducing increased IP, has been stressed [4], while monitoring intestinal mucosal metabolism (e.g. by gastric intramucosal pH measurements) has been shown to provide for early prognostic information [5, 6], and for a guideline in therapy, thereby improving outcome in ICU patients [7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deitch EA (1992) Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg 216: 117–134

    Article  PubMed  CAS  Google Scholar 

  2. Goris RJA, te Boekhorst TP, Nuytinck JKS, Gimbrere JS (1985) Multiple organ failure: Generalized autodestructive inflammation? Arch Surg 120: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  3. Meakins JL, Marshall JC (1986) The gastrointestinal tract: The “motor” of multiple organ failure. Arch Surg 121: 197–201

    Google Scholar 

  4. Marston A, Bulkley GB, Fiddian-Green RG, Haglund UH (eds) (1989) Splanchnic ischemia and multiple organ failure. Edward Arnold, Hodder amp; Stoughton, London, Melbourne, Auckland

    Google Scholar 

  5. Fiddian-Green RG, Baker S (1987) Predictive value of the stomach wall pH for complications after cardiac Operations: Comparison with other monitoring. Crit Care Med 15: 153–156.

    Google Scholar 

  6. Dolgio GR, Pusajo JF, Egurrola MA, et al. (1991) Gastric mucosal pH as a prognostic index of mortality in critically ill patients. Crit Care Med 19: 1037–1040

    Article  Google Scholar 

  7. Gutierrez G, Palizas F, Doglio G, et al. (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339: 195–199

    Article  PubMed  CAS  Google Scholar 

  8. Nuytinck HKS, Offermans XJMW, Kubat K, Goris RJA (1988) Whole–body inflammation in trauma patients. An autopsy study. Arch Surg: 1519–1524

    Google Scholar 

  9. 1985) Intestinal permeability. Lancet 1 (Editorial) 256–257

    Google Scholar 

  10. Olaison G, Leandersson P, Sjödahl R, Tagesson C (1988) Intestinal permeability to polyethyleneglycol 600 in Crohn’s disease. Perioperative determination in a defined segment of the small intestine. Gut 29: 196–199

    Google Scholar 

  11. Magnusson M, Magnusson K–E, Sundqvist T, Denneberg (1991) Impaired intestinal barrier function measured by differently sized Polyethylene glycols in patients with chronic renal failure. Gut 32: 754–759

    CAS  Google Scholar 

  12. Sundqvist T, Magnusson K–E, Sjödahl R, Stjernström I, Tagesson C (1980) Passage of molecules through the wall of the gastrointestinal tract. II. Gut 21: 208–214

    Google Scholar 

  13. Harding SE, Ukabam SG (1982) Mathematical models for determining intestinal permeability using Polyethylene glycol. Gut 24: 456

    Article  Google Scholar 

  14. Elia M, Behrens R, Northrop C, Wraight P, Neale G (1987) Evaluation of mannitol, lactulose and 51 Cr–labelled ethylenediaminetetra–acetate as markers of intestinal permeability in man. Clin Science 73: 197–204

    CAS  Google Scholar 

  15. Oktedalen G, Lunde OC, Opstad PK, Aabakken L, Kvernebo K (1992) Changes in gastrointestinal mucosa after long–distance running. Scand J Gastroenterol 27: 270–274

    Article  PubMed  CAS  Google Scholar 

  16. Ziegler TR, Smith RJ, O’Dwyer ST, Demling RH, Wilmore DW (1988) Increased intestinal permeability associated with infection in burn patients. Arch Surg 123: 1313–1319

    Article  PubMed  CAS  Google Scholar 

  17. LeVoyer T, Cioffi WG, Pratt L, et al. (1992) Alterations in intestinal permeability after thermal injury. Arch Surg 127: 26–30

    Article  PubMed  CAS  Google Scholar 

  18. Fink MP (1991) Gastro–intestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med 19: 627–641

    Article  PubMed  CAS  Google Scholar 

  19. Fleming SC, Kapembwa MS, Laker MF, Levin GE, Griffin GE (1990) Rapid and simultaneous determination of lactulose and mannitol in urine, by HPLC with pulsed amperometric detection, for use in studies of intestinal permeability. Clin Chem 36: 797–799

    PubMed  CAS  Google Scholar 

  20. Behrens RH, Docherty H, Elia M, Neale G (1984) A simple enzymatic method for the assay of urinary lactulose. Clin Chim Acta 137: 361–367

    Article  PubMed  CAS  Google Scholar 

  21. Niehaus WG, Dilts RP (1982) Purification and characterization of mannitol dehydrogenase from Aspergillus parasiticus. J Bacteriol 151: 243–250

    PubMed  CAS  Google Scholar 

  22. Shippee RL, Johnson A, Cioffi WG Jr, Lasko J, LeVoyer TE, Jordan B (1992) Simultaneous determinations of lactulose and mannitol in the urine of burn patients by gas liquid chromatography. Clin Chem 38: 343–345

    PubMed  CAS  Google Scholar 

  23. Laker MF, Bull HJ, Menzies IS (1982) Evaluation of mannitol for the use as a probe marker of gastrointestinal permeability in man. Eur J Clin Invest 12: 485–491

    Article  PubMed  CAS  Google Scholar 

  24. Roumen RMH, Vliet vd JA, Wevers RA, Goris RJA (1993) Gut permeability is increased after major vascular surgery. J Vase Surg (In press)

    Google Scholar 

  25. Ott M, Lembcke B, Staszewski S, Helm EB, Caspary WF (1991) Intestinal permeability in patients with acquired immunodeficiency Syndrome ( AIDS ). Kl in Wochenschr 69: 715–721

    Google Scholar 

  26. Murphy MS, Eastham EJ, Nelson R, Pearson ADJ, Laker MF (1989) Intestinal permeability in Crohn’s disease. Arch Dis Childhood 64: 321–325

    Article  CAS  Google Scholar 

  27. Ukabam SO, Clamp JR, Cooper BT (1983) Abnormal small intestinal permeability to sugars in patients with Crohn’ s disease of the terminal ileum and colon. Digestion 27: 70–74

    Article  PubMed  CAS  Google Scholar 

  28. Leke L, Barau E, Barbet JP, Epelbaum S, Vierin Y, Dupont C (1992) Value of the intestinal permeability test with lactulose–mannitol for Screening and monitoring of celiac disease in children. Arch Fr Pediatr 49: 33–37

    PubMed  CAS  Google Scholar 

  29. Akinbami FO, Brown GA, McNeish AS (1989) Intestinal permeability as a measure of small intestinal mucosal integrety: Correlation with jejunal biopsy. Afr J Med Sei 18: 187–192

    Google Scholar 

  30. Isolauri E, Juntunen M, Wiren S, Vuorinen P, Koivula T (1989) Intestinal permeability changes in acute gastroenteritis: Effects of clinical factors and nutritional management. J Pediatr Gastroenterol Nutr 8: 466–473

    Google Scholar 

  31. Lunn PG, Northrop-Clewes CA, Downes RM (1991) Intestinal permeability, mucosal injury, and growth faltering in Gambian infants. Lancet 338: 907–910

    Article  PubMed  CAS  Google Scholar 

  32. Cooper BT, Ukabam SO, O’Brien IAD, Hare JPO, Corrall RJM (1987) Intestinal permeability in diabetic diarrhoea. Diab Med 4: 49–52

    Article  CAS  Google Scholar 

  33. Mack DR, Flick JA, Durie PR, Rosenstein BJ, Ellis LE, Perman JA (1992) Correlation of intestinal lactulose permeability with exoerine pancreatic dysfunction. J Pediatr 120: 696–701

    Article  PubMed  CAS  Google Scholar 

  34. Erickson RA, Epsten RM (1988) Oral chenodeoxycholic acid increases small intestinal permeability to lactulose in humans. Am J Gastroenterol 83: 541–544

    PubMed  CAS  Google Scholar 

  35. O’Dwyer ST, Michie HR, Ziegler TR, Revhaug A, Smith RJ, Wilmore DW (1988) A Single dose of endotoxin increases intestinal permeability in healthy humans. Arch Surg 123: 1459–1464

    Article  PubMed  Google Scholar 

  36. Elia M, Goren A, Behrens R, Barber RW, Neale G (1987) Effect of total starvation and very low ealorie diets on intestinal permeability in man. Clin Science 73: 205–210

    CAS  Google Scholar 

  37. Dupont C, Barau E, Molkhou P, Raynaud F, Barbet JP, Dehennin L (1989) Food-induced alterations of intestinal permeability in children with cow’s milk-sensitive enteropathy and atopic dermatitis. J Pediatr Gastroenterol Nutr 8: 459–465

    Article  PubMed  CAS  Google Scholar 

  38. Harris CE, Griffiths RD, Freestone N, Billington D, Atherton ST, Macmillan RR (1992) intestinal permeability in the critically ill. Intensive Care Med 18:38–44–1

    Google Scholar 

  39. Deitch EA (1990) Intestinal permeability is increased in burn patients shortly after injury. Surgery 107: 411–416

    PubMed  CAS  Google Scholar 

  40. Roumen RMH, Hendriks T, Wevers RA, Goris RJA (1993) Intestinal permeability after severe trauma and hemorrhagic shock is increased, without relation to septic complications. Arch Surgery (In press)

    Google Scholar 

  41. Ashbaugh DG, Petty TS (1972) Sepsis complicating the acute respiratory distress Syndrome. Surg Gynecol Öbstet 15: 865–869

    Google Scholar 

  42. van Deventer SJH, Buller HR, ten Cate JW, Sturk A, Pauw W (1988) Endotoxaemia: An early predictor of septicaemia in febrile patients. Lancet 1 605–609

    Google Scholar 

  43. Deiteh EA, Berg R, Specian R (1987) Endotoxin promotes the translocation of bacteria from the gut. Arch Surg 122: 185–190

    Article  Google Scholar 

  44. Navaratham RL, Morris SE, Traber DL, et al. (1990) Endotoxin (LPS) increases mesenteric vascular resistance (MVR) and bacterial translocation ( BT ). J Trauma 30: 1104–1115

    Google Scholar 

  45. Fink MP, Antonsson JB, Wang H, Rothschild HR (1991) Increased intestinal permeability in endotoxic pigs. Arch Surg 126: 211–218

    Article  PubMed  CAS  Google Scholar 

  46. Papa M, Halperin Z, Rubinstein E, Orenstein A, Gafin S, Adar R (1983) The effect of ischemia of the dogs’ colon on transmural migration of bacteria and endotoxin. J Surg Res 35: 264–269

    Article  PubMed  CAS  Google Scholar 

  47. Bottoms GD, Gimarc S, Pfeifer C (1991) Plasma concentrations of endotoxin following jugular or portal injections of endotoxin and following gastrointestinal ischemia due to hemorrhage. Circ Shock 33: 1–6

    PubMed  CAS  Google Scholar 

  48. Corson RJ, Paterson IS, O’Dwyer ST, et al. (1992) Lower limb ischemia and reperfusion alters gut permeability. Eur J Vase Surg 6: 158–163

    Article  CAS  Google Scholar 

  49. Gathiram P, Gaffin SL, Wells MT, Brock-Utne JG (1986) Superior mesenteric artery occlusion shock in cats: Modification of the endotoxemia by anti-lipopolysaccharide antibodies (antiLPS). Circ Shock 19: 231–237

    Google Scholar 

  50. Deitch EA, Morrison J, Berg R, Specian RD (1990) Effect of hemorrhagic shock on bacterial translocation, intestinal, morphology, and intestinal permeability in conventional and antibiotic-decontaminated rats. Crit Care Med 18: 529–536

    Article  PubMed  CAS  Google Scholar 

  51. Baker JW, Deitch EA, Li M, Berg RD, Specian RD (1988) Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 28: 896–906

    Article  PubMed  CAS  Google Scholar 

  52. Rush BF, Sori AJ, Murphy TF, Smith S, Flanagan JJ, Machiedo GW (1988) Endotoxemia and bacteria during hemorrhagic shock. Ann Surg 207: 549–554

    Article  PubMed  Google Scholar 

  53. Peitzman AB, Udekwu AO, Ochoa J, Smith S (1991) Bacterial translocation in trauma patients. J Trauma 31: 1083–1087

    PubMed  CAS  Google Scholar 

  54. Moore FA, Moore EE, Poggetti R, et al. (1991) Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J Trauma 31: 629–638

    Google Scholar 

  55. Alexander JW, Boyce ST, Babcock GF, et al. (1990) The process of microbial translocation. Ann Surg 212: 496–510

    Article  PubMed  CAS  Google Scholar 

  56. Wells CL, Maddaus MA, Simmons RL (1987) Role of the macrophage in the translocation of intestinal bacteria. Arch Surg 122: 48–53

    Article  PubMed  CAS  Google Scholar 

  57. Wells CL, Maddaus MA, Simmons RL (1988) Proposed mechanism for the translocation of intestinal bacteria. Rev Infect Dis 10: 958–979

    Article  PubMed  CAS  Google Scholar 

  58. Morales J, Kibsey P, Thomas PD, Poznansky MJ, Hamilton SM (1992) The effects of ischemia and ischemia-reperfusion on bacterial translocation, lipid peroxidation, and gut histology: Studies on hemorrhagic shock in pigs. J Trauma 33: 221–227

    Google Scholar 

  59. Wells CL, Barton RG, Wavatne CS, Dunn DL, Cerra FB (1992) Intestinal bacterial flora, intestinal pathology, and lipopolysaccharide–induced translocation of intestinal bacteria. Circ Shock 37: 117–123

    PubMed  CAS  Google Scholar 

  60. Stoutenbeek CP, van Saene HKF, Miranda DR, Zandstra DF (1984) The effect of selective decontamination of the digestive tract on colonisation and infection rate in multiple trauma patients. Intensive Care Med 10: 185–192

    Article  PubMed  CAS  Google Scholar 

  61. van der Waay D, Berghuis-de Vries JM (1974) Selective decontamination of Enterobacteriaceae species from the digestive tract in mice and monkeys. J Hyg 72: 205–211

    Article  Google Scholar 

  62. Goris RJA, van Dalen R (1992) Selective decontamination in the intensive care unit. Adv Trauma Crit Care 7: 61–78

    Google Scholar 

  63. Goris RJA, Boekholtz WKF, van Bebber IPT, Nuytinck JKS, Schillings PHM (1986) Multiple organ failure and sepsis without bacteria. An experimental model. Arch Surg 121: 897–901

    Google Scholar 

  64. Steinberg S, Flynn W, Kelley K, et al. (1989) Development of a bacteria-independent model of the multiple organ failure Syndrome. Arch Surg 124: 1390–1395

    Article  PubMed  CAS  Google Scholar 

  65. Mainous MR, Tso P, Berg RD, et al. (1991) Studies on the route, magnitude and time course of bacterial translocation in a model of systemic inflammation. Arch Surg 126: 33–37

    Article  PubMed  CAS  Google Scholar 

  66. Goris RJA, van Bebber IPT, Hendriks TH (1990) Role of bacterial translocation and selective gut decontamination in the development of multiple organ failure. In: Schlag G, Redl H, Siegel JH, Traber DL (eds) Shock, Sepsis, and Organ Failure. Springer Verlag, Berlin, Heidelberg, New York, pp 133–144

    Google Scholar 

  67. Goris RJA, van Bebber IPT, Mollen RMH, et al. (1991) Does selective decontamination of the gastro–intestinal tract prevent multiple organ failure? Arch Surg 126: 561–565

    Article  PubMed  CAS  Google Scholar 

  68. Adam H, Staber F, Belohradsky BH, et al. (1972) Effect of dihydrostreptomycin on phagocytosis of mouse peritoneal macrophages in culture. Infect Immun 5: 537–541

    PubMed  CAS  Google Scholar 

  69. Leu RW, Rummage JA, Rahimi MB, et al. (1985) Relationship between murine macrophage Fe reeeptor-mediated phagocytic function and competence for activation for non-speeifie tumor cytotoxicity. Immunobiol 1: 220–233

    Google Scholar 

  70. Nieuwenhuijzen GAP, Haskel Y, Lu Q, et al. (1992) Macrophage elimination increases bacterial translocation and gut-origin septicemia but decreases symptoms and mortality in a model of systemic inflammation. In: Mason SK, Oliver KC (eds), Surgical Forum Volume XLIII, Lawrence, KS:pp 72–74

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roumen, R.M.H., Goris, R.J.A. (1993). Intestinal Permeability and Bacterial Translocation: Their Role in the Development of MOF. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1993. Yearbook of Intensive Care and Emergency Medicine 1993, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84904-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84904-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56463-8

  • Online ISBN: 978-3-642-84904-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics