Skip to main content

Muscle Protein Synthesis in Critical Illness

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1993

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 1993 ((YEARBOOK,volume 1993))

Abstract

Measurements of protein synthesis in critical illness are scarce and textbooks refer to data obtained in animal experiments, which do not necessarily reflect the Situation in man. Lately the use of stable isotopes, however, has permitted direct measurements of the incorporation of labelled amino-acids into muscle protein in man. Thus, for the first time knowledge of this area is based upon human studies, and consequently it is based upon a more solid foundation in contrast to that derived from animal data. However, methodological difficulties with the techniques used call for a cautious interpretation of the results obtained. In particular, special care must be taken to ensure that the isotopic enrichment of the free amino-acid precursor for protein synthesis can be correctly evaluated. So far, the so called “large dose technique” [1], which overcomes this difficulty, has proven to be an ideal method in many respects for studies of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garlick PJ, Wernerman J, McNurlan MA, et al. (1989) Measurement of the rate of protein syn-thesis in muscle of postabsorptive young men by injection of a flooding dose of [l-13C]leucine. Clin Sei 77: 329–336

    CAS  Google Scholar 

  2. Cuthbertson DP (1930) The disturbance of metabolism produced by bony and non-bony injury, with notes on certain abnormal conditions of bone. Biochem J 24: 1244–1263

    PubMed  CAS  Google Scholar 

  3. Cuthbertson DP (1936) Further observations on the disturbance of metabolism caused by injury, with particular reference to the dietary requirements of fracture cases. Br J Surg 23: 505–521

    Article  Google Scholar 

  4. Cuthbertson DP (1931)s The distribution of nitrogen and sulphur in the urine during conditions of increased catabolism. Biochem J 25:236–244

    PubMed  CAS  Google Scholar 

  5. Wernerman J, Hammarqvist F, Vinnars E (1990) Alpha-ketoglutarate and postoperative muscle catabolism. Lancet 335: 701–703

    Article  PubMed  CAS  Google Scholar 

  6. Waterlow JC, Garlick PJ, Millward DJ (1978) Protein turnover in the wohle body and in whole tissues. In: Waterlow JC, Garlick PJ, Millward DJ (eds) Protein Turnover in Mammalian Tissues and in the Whole Body. North Holland, Amsterdam, pp 443–479

    Google Scholar 

  7. Cobelli C, Saccomani MP, Tessari P, Biolo J, Luzi L, Matthews DE (1991) Compartmental model of leucine kinetics in humans. Am J Physiol 261: E539–E550

    PubMed  CAS  Google Scholar 

  8. Fern EB, Garlick PJ, Waterlow JC (1985) The concept of the Single body pool of metabolic nitrogen in determining the rate of whole body nitrogen turnover. Hum Nutr Clin Nutr 39: 85–99

    PubMed  CAS  Google Scholar 

  9. Garlick PJ, Fern EB (1985) Whole-body protein turnover: Theoretical considerations. In: Garow JS, Halliday D (eds) Substrate and Energy Metabolism in Man, Libbey London, pp 7–15

    Google Scholar 

  10. Long CL, Jeevanandam M, Kim BM, Kinney JM (1977) Whole body protein synthesis and catabolism in septic man. Am J Clin Nutr 30: 1340–1344

    PubMed  CAS  Google Scholar 

  11. Brikhan RH, Long CL, Fitkin D, Geiger JW, Blakemore WS (1980) Effects of major skeletal trauma on whole body protein turnover in man measured by L-[1,14C]-leucine. Surgery 88: 294–300

    Google Scholar 

  12. Jahoor F, Desai M, Herndon DN, Wolfe RR (1988) Dynamics of the protein metabolic response to burn injury. Metabolism 37: 330–337

    Article  PubMed  CAS  Google Scholar 

  13. Tomkins AM, Garlick PJ, Scholfield WN, Waterlow JC (1983) The combined effects of infec-tion and malnutrition on protein metabolism in children. Clin Sei 65: 313–324

    CAS  Google Scholar 

  14. Young VR (1970) The role of skeletal and cardiac muscle in the regulation of protein metabo-lism. In: Munro HN (ed) Mammalian protein metabolism Vol IV. Academic Press, New York, pp 585–674

    Google Scholar 

  15. Halliday D, Pacy PJ, Cheng KN, et al. (1988) Rate of protein synthesis in skeletal muscle of normal man and patients with muscular dystrophy: A reassessment. Clin Sei 74: 237–240

    Google Scholar 

  16. Edwards R, Young A, Wiles M (1980) Needle biopsy of skeletal muscle in the diagnosis of myopathy and the clinical study of muscle function and repair. N Engl J Med 302: 261–271

    Article  PubMed  CAS  Google Scholar 

  17. Smith K, Rennie M (1990) Protein turnover and amino-acid metabolism in human skeletal muscle. Bailliere’s Clinical Endocrinology and Metabolism 3: 461–498

    Article  Google Scholar 

  18. Bergström J, Fürst P, Noree LO, Vinnars E (1974) Intracellular free amino-acid concentration in human muscle tissue. J Appl Physiol 36: 693–697

    PubMed  Google Scholar 

  19. Feiig P, Wahren J (1971) Amino-acid metabolism in exercising man. J Clin Invest 50: 2703–2714

    Article  Google Scholar 

  20. Vinnars E, Bergström J, Fürst P (1975) Influence of the postoperative State on the intracellular free amino-acids in human muscle tissue. Ann Surg 182: 665–671

    Article  PubMed  CAS  Google Scholar 

  21. Glowes GHA, Randell HT, Cha CJ (1980) Amino-acid and energy metabolism in septic and traumatized. JPEN 4: 195–203

    Article  Google Scholar 

  22. Lundholm K, Schersten T (1975) Determination in vitro of the rate of protein synthesis and degradation in human skeletal muscle tissue. Eur J Biochem 60: 181–186

    Article  PubMed  CAS  Google Scholar 

  23. Wernerman J, von der Decken A, Hammarqvist F, Botta D, Vinnars E (1990) Incorporation of [C]leucine into human skeletal muscle protein in a cellfree system as a measure of protein synthesis-influence of stress hormones. J Clin Biochem Nutr 9: 269–278

    Article  Google Scholar 

  24. Munro HN (1970) A general survey of mechanisms regulating protein metabolism in mammals. In: Nunro HN (ed) Mammalian protein metabolism Vol IV, Academic Press, New York, pp 3–130

    Google Scholar 

  25. Becher GR (1974) Some practical applications of protein synthesis and muscle growth. J Animal Sei 38: 1071–1078

    Google Scholar 

  26. Wernerman J, von der Decken A, Vinnars E (1985) Size distribution of ribosomes in biopsy speeimens of human skeletal muscle during starvation. Metabolism 34: 665–669

    Article  PubMed  CAS  Google Scholar 

  27. Wernerman J, von der Decken A, Vinnars E (1986) Protein synthesis in skeletal muscle after abdominal surgery: The effect of total parenteral nutrition. JPEN 10: 578–582

    Google Scholar 

  28. Blomqvist B, von der Decken A, Vinnars E, Wernerman J (1991) Starvation changes muscle myosin heavy chain messenger RNA accumulation. J Clin Biochem Nutr 11: 223–231

    Article  CAS  Google Scholar 

  29. Halliday D, McKeran RO (1975) Measurement of muscle protein synthesis rate from serial muscle biopsies and total protein turnover in man by continuous intravenous infusion of L-(alfa-15N) lysine. Clin Sei Mol Med 49: 581–590

    CAS  Google Scholar 

  30. Reeds PJ (199Z) Isotopic estimation of protein synthesis and proteolysis in vivo. In: Nissen S (ed) Modern methods in protein nutrition and metabolism. Academic Press, San Diego, pp 249–273

    Google Scholar 

  31. Watt PW, Linsey Y, Scrimgeoyr CM, et al. (1991) Isolation of aminoacyl-tRNA and its labelling with stable-isotope tracers: Use in studies of human tissue protein synthesis. Proc Natl Acad Sei USA 88: 5892–5896

    Google Scholar 

  32. Anhalt J, Vidrich A, Khaissallah EA (1974) Compartmentation of free amino-acids for protein synthesis in rat liver. Biochem J 140: 539–548

    Google Scholar 

  33. Fern EB, Garlick PJ (1976) Compartmentation of albumin and ferritin synthesis in rat liver in vivo. Biochem J 156: 189–192

    PubMed  CAS  Google Scholar 

  34. Rennie MJ, Edwards RHT, Halliday D, Matthews DE, Wolman SL, Millward DJ (1982) Muscle protein synthesis measured by stable isotope techniques in man: The effects of feeding and fasting. Clin Sei 63: 519–523

    Google Scholar 

  35. Henshow EC, Hirsch CA, Morton BE, Hiatt HH (1971) Control of protein synthesis in mammalian tissues through changes in ribosomal activity. J Biol Chem 246: 436–446

    Google Scholar 

  36. McNurlan MA, Tomkins AM, Garlick PJ (1979) The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem J 178: 373–379

    PubMed  CAS  Google Scholar 

  37. Garlick PJ, McNurlan MA, Preedy VR (1980) A rapid and convenient method for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J 192: 719–723

    PubMed  CAS  Google Scholar 

  38. McNurlan MA, Essen P, Thoreil A, et al. (1992) Response of protein synthesis in human skeletal muscle to insulin, assessed with L-[d5]phenyl-alanine. Clin Nutr 11 (Suppl): 75

    Article  Google Scholar 

  39. Garlick PJ, Wernerman J, McNurlan MA, Essen P (1990) What is the normal response of protein turnover to nutrient supply? Clin Nutr 9: 294–296

    Article  PubMed  CAS  Google Scholar 

  40. McNurlan M, Essen P, Milne E, Vinnars E, Wernerman J (1993) Temporal responses of protein synthesis in human skeletal muscle to feeding. Br J Nutr (in press)

    Google Scholar 

  41. Nair KS, Halliday D, Griggs RC (1988) Leucine incorporation into mixed skeletal protein mus-cle in humans. Am J Physiol 254: E208–E213

    PubMed  CAS  Google Scholar 

  42. McNurlan M, Essen P, Heys SD, Buchan V, Garlick P, Wernerman J (1991) Measurement of protein synthesis in human skeletal muscle: Further investigation of the ”flooding” technique. Clin Sei 81: 557–564

    Google Scholar 

  43. Tjäder I, Essen P, McNurlan MA, Garlick PJ, Wernerman J (1992) Protein synthesis rate in human skeletal muscle decreases 24 hours after abdominal surgery irrespective of intravenous nutrition. Clin Nutr 11 (Suppl): 49

    Article  Google Scholar 

  44. Smith K, Essen P, McNurlan M, Rennie MJ, Garlick PJ, Wernerman J (1992) A multi-tracer investigation of the effect of a flooding dose administered during the constant infusion of tracer amino-acid on the rate of tracer incorporation into human muscle protein. Proc Nutr Soc 51: 109A

    Google Scholar 

  45. Jahoor F, Zhang XJ, Baba H, Sakurai Y, Wolfe RR (1992) Comparison of constant infusion and flooding dose techniques to measure muscle protein synthesis rate in dogs. J Nutr 122: 878–887

    PubMed  CAS  Google Scholar 

  46. McNurlan MA, Heys SD, Park KGM, et al. (1990) Protein synthesis in human tumour and muscle is enhanced more by TPN than by solutions enriched with branched-chain amino-acids. Clin Nutr 9 (Suppl): 21

    Article  Google Scholar 

  47. Wernerman J, von der Decken A, Vinnars E (1985) The diurnal pattern of protein synthesis in human skeletal muscle. Clin Nutr 4: 203–205

    Article  PubMed  CAS  Google Scholar 

  48. Rennie MJ, Bennegard K, Eden E, Emery PW, Lundholm K (1984) Urinary exeretion and efflux from the leg of 3-methylhistidine before and after major surgical Operation. Metabolism 33: 250–256

    Article  PubMed  CAS  Google Scholar 

  49. Sjölin J, Stjernström H, Friman G, Larsson J, Wahren J (1990) Total and net muscle protein breakdown in infection determined by amino-effluxes. Am J Physiol 258: E856–E863

    PubMed  Google Scholar 

  50. Petersson B, Wernermän J, Waller SO, von der Decken A, Vinnars E (1990) Elective abdomi-nal surgery depresses muscle protein synthesis and increases subjective fatigue for more than 30 days. Br J Surg 77: 796–800

    Article  PubMed  CAS  Google Scholar 

  51. Hammarqvist F, Wernerman J, von der Decken A, Vinnars E (1988) The effect of branched chain amino-acids upon postoperative muscle protein synthesis and nitrogen balance. Clin Nutr 7: 171–175

    Article  Google Scholar 

  52. Askanzi J, Elwyn DH, Kinney JM, Gump FE, Michelsen CB, Stinchfield FE (1978) Muscle and plasma amino-acids after injury: The role of inactivity. Ann Surg 188: 797–803

    Google Scholar 

  53. Hammarqvist F, Wernerman J, Ali MR, Vinnars E (1990) Effects of an amino-acid Solution enriched with either branched chain amino-acids or ornithine-alpha-ketoglutrate on the postoperative intracellular amino-acid concentration of skeletal muscle. Br J Surg 77: 214–218

    Article  PubMed  CAS  Google Scholar 

  54. Petersson B, Vinnars E, Waller SO, Wernerman J (1992) Long-term changes in muscle free amino-acid levels after elective abdominal surgery. Br J Surg 79: 212–216

    Article  PubMed  CAS  Google Scholar 

  55. Essen P, McNurlan MA, Wernerman J, Vinnars E, Garlick PJ (1992) Uncomplicated surgery, but not general anesthesia, decreases muscle protein synthesis. Am J Physiol 262: E253–E260

    PubMed  CAS  Google Scholar 

  56. Essen P, McNurlan MA, Sonnenfeld T, et al. (1993) Muscle protein synthesis postoperatively The effect of Intravenous nutrition. Eur J Surg (in press)

    Google Scholar 

  57. Thoreil A, Essen P, Ljungqvist O, et al. (1992) Postoperative insulin resistance and muscle protein synthesis rate. Clin Nutr 11 (Suppl): 48

    Article  Google Scholar 

  58. Vinnars, E, Holmström B, Schildt B, Odebäck AC, Fürst P (1983) Metabolic effects of four intravenous nutritional regimens in patients undergoing elective surgery. 13: Muscle amino acids and energy-rich phosphates. Clin Nutr 2: 3–11

    Google Scholar 

  59. Baraya M, Wilson E, Downie S, Weryk B, Cuschier A, Rennie MJ (1992) The effect of alanylglutamine peptide supplementation on muscle protein synthesis in post-surgical patients receiving glutamine-free amino-acids intravenously. Proc Nutr Soc 51: 104A

    Google Scholar 

  60. Essen P, McNurlan MA, Tjäder I, et al. (1992) Tissue protein synthesis in the critical ill patient. Clin Nutr 11 (Suppl): 1

    Article  Google Scholar 

  61. Roth E, Funcovics J, Mühlbacher F, et al. (1982) Metabolic disorders in severe abdominal sepsis: Glutamine deficiency in skeletal muscle. Clin Nutr 1: 25–42

    Google Scholar 

  62. Gamrin L, Hultman E, Vinnars E, Wernerman J (1991) Total parenteral nutrition does not pre-vent muscle glutamine depletion in intensive care patients. Clin Nutr 10 (Suppl): 28

    Article  Google Scholar 

  63. McLennan PA, Brown RA, Rennie MJ (1987) A positive realtionsip between protein synthetic rate and intracellular glutamine concentration in perfused fat skeletal muscle. FEBS (Letter) 215: 187–191

    Article  Google Scholar 

  64. Jepson MM, Bates PC, Broadbent P, Pell JM, Miliard DJ (1988) Relationship between glutami-ne concentration and protein synthesis in rat skeletal muscle. Am J Physiol 255: E166–E172

    PubMed  CAS  Google Scholar 

  65. Gamrin L, Wernerman J, Vinnars E (1992) The free amino-acid pattern in skeletal muscle of critically ill patients does not change over time. Clin Nutr 11 (Suppl): 48

    Article  Google Scholar 

  66. Essen P, Wernerman J, Sonnenfeldt T, Thunell S, Vinnars E (1992) Free amino-acids in plasma and muscle during 24 hours post-operatively A descriptive study. Clin Physiol 12: 165–179

    Google Scholar 

  67. Hammarqvist, F, Wernerman J, Ali MR, von der Decken A, Vinnars E (1989) Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann Surg 209: 455–461

    Article  PubMed  CAS  Google Scholar 

  68. Stehle P, Zanders J, Mertes N, et al. (1989) Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet 1: 231–233

    Article  PubMed  CAS  Google Scholar 

  69. Hammarqvist F, Wernerman J, von der Decken A, Vinnars E (1991) Alpha ketoglutarate preserves protein synthesis and free glutamine in skeletal muscle after surgery. Surgery 109: 28–36

    PubMed  CAS  Google Scholar 

  70. Hammarqvist F, Wernerman J, von der Decken A, Vinnars E (1990) Alanyl-glutamine counteracts the depletion of fre glutamine and the postoperative decline in protein synthesis in skeletal muscle. Ann Surg 212: 637–644

    Article  PubMed  CAS  Google Scholar 

  71. Petersson B, Kaller SO, Vinnars E, Wernerman J (1990) Glycyl-glutamine in postoperative TPN reduces and postpones the decrease in muscle glutamine. Clin Nutr 9 (Supp): 88

    Article  Google Scholar 

  72. Petersson B, Waller SO, von der Decken A, Vinnars E, Wernerman J (1991) The long-term ef-fect of postoperative TPN supplemented with glycyl-glutamine on protein synthesis in skeletal muscle. Clin Nutr 10 (Suppl): 10

    Article  Google Scholar 

  73. Karner J, Roth, E (1990) Alanyl-glutamine infusions to patients with acute pancreatitits. Clin Nutr 9: 43–44

    Article  PubMed  CAS  Google Scholar 

  74. Roth E, Winkler S, Hölzenbein T, Valentini L, Karner J (1992) High load of alanyl-glutamine in two patients with acute pancreatitis. Clin Nutr 11 (Suppl): 82

    Article  Google Scholar 

  75. Petersson B, Gamrin L, Hammarqvist F, Vinnars E, Wernerman J (1992) Alpha-ketoglutarate given together with TPN improves the free glutamine-levels in glutamine-depleted intensive care patients. Clin Nutr 11 (Suppl): 26

    Article  Google Scholar 

  76. Roth-Merten A, Karner J, Winkler S, Valentini L, Schaupp K, Roth E (1990) Influence of al-pha-ketoglutarate infusion on glutamate and glutamine metabolism. Clin Nutr 9: 46–47

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wernerman, J., Essén, P., Garlick, P. (1993). Muscle Protein Synthesis in Critical Illness. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1993. Yearbook of Intensive Care and Emergency Medicine 1993, vol 1993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84904-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84904-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56463-8

  • Online ISBN: 978-3-642-84904-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics