Skip to main content

Clonal Analysis of n-ras Gene Activation in Acute Myeloid Leukemia

  • Conference paper
Recent Advances in Cell Biology of Acute Leukemia

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 131))

Abstract

Members of the ras gene family code for 21-kDa proteins (p21) located at the inner cellular membrane. Several lines of evidence suggest that p21 proteins are involved in intracellular signal transduction pathways, thus regulating cellular growth and differentiation. Ras proteins bind and hydrolyze GTP (Gibbs et al. 1984; Sweet et al. 1984) and show sequence homology to G proteins (Hurley et al. 1984) which are thought to participate in the action of some cytokines. The p21 of n-ras has been shown to couple receptor binding of hematopoietic growth factors to inositol lipid hydrolysis in fibroblasts (Wakelam et al. 1986). Conversely, activation of G proteins by sodium fluoride in the presence of Al3+ results in expression of cytokines (Yamato et al. 1989), and expression of an activated ras gene transfected into normal cells or cell lines can induce cytokine expression by these cells (Yiagnisis and Spandidos 1987; Demetri et al. 1988; Andrejauskas and Moroni 1989) and change their responsiveness towards growth factors (Kelekar and Cole 1987; Leof et al. 1987). Point mutations leading to an activated p21 occur in numerous human malignancies (for a review, see Bos 1988). Activating mutations of n-ras have been reported to occur in 25%–40% of cases of acute myelogenous leukemia (AML). (Bos et al. 1985; Janssen et al. 1987; Farr et al. 1988). However, the presence of these mutations can be restricted to subpopulations (subclones) of leukemic cells (Toksoz et al. 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrejauskas E, Moroni C (1989) Reversible abrogation of IL-3 dependence by an inducible H-ras oncogene. EMBO J 8: 2575–2581

    PubMed  CAS  Google Scholar 

  • Bartram CR, Ludwig WD, Hiddemann W, Lyons J, Buschle M, Ritter J, Harbott J, Fröhlich A, Janssen JWG (1989) Acute myeloid leukemia: analysis of Ras gene mutations and clonality defined by polymorphic x-linked loci. Leukemia 3: 247–256

    PubMed  CAS  Google Scholar 

  • Begley CG, Metealf D, Nicola NA (1987) Purified colony stimulating factors (G-CSF and GM-CSF) induce differentiation in human HL-60 leukemic cells with suppression of clonogenicity, Int J Cancer 39: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Bos JL (1988) The RAS gene family and human carcinogenesis. Mutation Res 195: 255–271

    PubMed  CAS  Google Scholar 

  • Bos JL, Toksoz D, Marshall CJ, Verlaan-de Vries M, Veeneman GH, van der Eb AJ, van Boom JH, Janssen JWG, Steenvorden ACM (1985) Amino-acid substitutions at codon 13 of the N-RAS oncogene in human acute myeloid leukemia. Nature 315: 726–730

    Article  PubMed  CAS  Google Scholar 

  • Collins S, Groudine M (1982) Amplification of endogenous myc-related DNA sequences in a human myeloid leukemia cell line. Nature 298: 679–681

    Article  PubMed  CAS  Google Scholar 

  • Dalla-Favera R, Gelman EP, Martinotti S, Franchini G, Papas TS, Gallo RC, Wong-Staal F (1982) Cloning and characterization of different human sequences related to the onco gene (v-myc) of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 79: 6497–6501

    Article  PubMed  CAS  Google Scholar 

  • Demetri GD, Ernst TJ, Pratt ES, Zenzie BW, Rheinwald JG, Griffin JD (1990) Expression of ras oncogenes in cultured human cells alters the transcriptional and posttranscriptional regulation of cytokine genes. J Clin Invest 86: 1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Ernst TJ, Gazdar A, Ritz J, Shipp MA (1988) Identification of a second transforming gene, RASn, in a human multiple myeloma line with a rearranged c-myc allele. Blood 72: 1163–1167

    PubMed  CAS  Google Scholar 

  • Farr CJ, Saiki RK, Erlich HA, McCormick F, Marshall CJ (1988) Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA 85: 1629–1633

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Ann Biochem 132: 6–13

    Article  CAS  Google Scholar 

  • Gibbs JB, Sigal IS, Poe M, Scolnick EM (1984) Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA 81: 5704–5708

    Article  PubMed  CAS  Google Scholar 

  • Griffin JD, Young DC, Herrmann F, Wiper D, Wagner K, Sabbath KD (1986) Effects of recombinant human GM-CSF on proliferation of clonogenic cells in acute myeloblastic leukemia. Blood 76: 1448–1453

    Google Scholar 

  • Hardy KJ, Peterlin BM, Atchinson RE, Stobo JD (1985) Regulation of expression of the human interferon alpha gene. Proc Natl Acad Sci USA 82: 8173–8177

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Taga T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatu A, Tsunasawa S, Sakiyama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324: 73–75

    Article  PubMed  CAS  Google Scholar 

  • Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG (1984) Homologies between signal transducing G proteins and ras gene products. Science 226: 860–862

    Article  PubMed  CAS  Google Scholar 

  • Janssen JWG, Steenvoorden ACM, Lyons J, Anger B, Bohlke JU, Bos JL, Seliger H, Bartram CR (1987) RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplasia syndromes. Proc Natl Acad Sci USA 84: 9228–9232

    Article  PubMed  CAS  Google Scholar 

  • Kelekar A, Cole MD (1987) Immortalization by c-myc, H-ras, and Ela oncogenes induces differential cellular gene expression and growth factor responses. Mol Cell Biol 7: 3899–3907

    PubMed  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblast requires at least two cooperating oncogenes. Nature 304: 596–602

    Article  PubMed  CAS  Google Scholar 

  • Leof EB, Proper JA, Moses HL (1987) Modulation of transforming growth factor type beta action by activated ras and c-myc. Mol Cell Biol 7: 2649–2652

    PubMed  CAS  Google Scholar 

  • Lübbert M, Mirro Jr J, Kahan J, Miller CW, Isaac G, Kitchingman G, Mertelsmann R, Herrmann F, McCormick F, Koeffler HP (1990) N-ras gene point mutations in childhood acute lymphocytic leukemia correlate with a poor prognosis. Blood 75: 1163–1169

    PubMed  Google Scholar 

  • Mallet M, Mane SM, Meltzer S, Needleman SW (1989) C-myc amplification coexisting with N-ras point mutation in the biphenotypic cell line RED-3. Leukemia 7: 511–515

    Google Scholar 

  • Murray MJ, Cunningham JM, Parada LF, Duatry F, Lebowitz P, Weinberg RA (1983) The HL-60 transforming sequence: a RAS oncogene coexisting with altered myc genes in hematopoietic tumors. Cell 33: 749–757

    Article  PubMed  CAS  Google Scholar 

  • Noda M, Ko M, Ogura A, Liu DG, Amano T, Takano T, Ikawa I (1985) Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature 318: 73–75

    Article  PubMed  CAS  Google Scholar 

  • Olson EN, Spizz G, Tainsky MA (1987) The oncogenic forms of N-ras or H-ras prevent skeletal myoblast differentiation. Mol Cell Biol 7: 2104–2111

    PubMed  CAS  Google Scholar 

  • Oster W, Cicco NA, Klein H, Hirano T, Kishimoto T, Lindemann A, Mertelsmann RH, Herrmann F (1989) Participation of the cytokines Interleukin 6, tumor necrosis factor-alpha, and Interleukin 1-beta secreted by acute myelogenous leukemia blasts in autocrine and paracrine leukemia growth control. J Clin Invest 84: 451–457

    Article  PubMed  CAS  Google Scholar 

  • Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1353

    Article  PubMed  CAS  Google Scholar 

  • Seremetis S, Inghirami G, Ferrero D, Dalla-Favera R (1989) Transformation and plasmacytoid differentiation of EBV-infected human B lymphoblasts by RAS oncogenes. Science 243: 660–663

    Article  PubMed  CAS  Google Scholar 

  • Sweet RW, Yokoyama S, Kamata T, Feramisco JR, Rosenberg M, Gross M (1984) The product of RAS is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311: 273–275

    Article  PubMed  CAS  Google Scholar 

  • Toksoz D, Farr CJ, Marshall CJ (1987) ras gene activation in a minor proportion of the blast population in acute myeloid leukemia. Oncogene 1: 409–413

    PubMed  CAS  Google Scholar 

  • Tomonaga M, Golde DW, Gasson JC (1986) Biosynthetic (recombinant) human granulocyte-macrophage colony stimulating factor: effect on normal bone marrow and leukemic cell lines. Blood 67: 31–36

    PubMed  CAS  Google Scholar 

  • Wakelam MJO, Davies SA, Houslay MD, McKay I, Marshall CJ, Hall A (1986) Normal p21N-ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature 323: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Yamato K, El-Hajjaoui Z, Kuo JF, Koeffler HP (1989) Granulocyte-macrophage colony-stimulating factor: signals for its mRNA accumulation. Blood 74: 1314–1320

    PubMed  CAS  Google Scholar 

  • Yiagnisis M, Spandidos DA (1987) Interleukin-3 like activity secreted from human RAS or MYC transfected rodent cells. Anticancer Res 7: 1293–1298

    PubMed  CAS  Google Scholar 

  • Yunis JJ, Boot AJM, Mayer MG, Bos JL (1989) Mechanisms of ras mutation in myelodysplastic syndrome. Oncogene 4: 609–614

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Lübbert, M., Oster, W., McCormick, F., Mertelsmann, R., Herrmann, F. (1993). Clonal Analysis of n-ras Gene Activation in Acute Myeloid Leukemia . In: Ludwig, WD., Thiel, E. (eds) Recent Advances in Cell Biology of Acute Leukemia. Recent Results in Cancer Research, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84895-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84895-7_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84897-1

  • Online ISBN: 978-3-642-84895-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics