Skip to main content

The In Vitro Analysis of Biochemical Changes Relevant to Skin Carcinogenesis

  • Conference paper
Book cover Skin Carcinogenesis in Man and in Experimental Models

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 128))

Abstract

The phenotypic alterations produced in mouse skin cells during the multistage development of squamous cancer have been well documented. In normal skin, all proliferating cells are confined to the basal cell compartment where less than 10% of the cells are in S phase when pulse-labeled with DNA precursors. Two keratins, K5 (M r 60 000) and K14 (M r 55 000), are transcribed largely in basal cells, although the proteins persist in the upper layers (Roop et al. 1988). The commitment to differentiate is associated with the loss of proliferative potential, the commencement of suprabasal migration, and the expression of two suprabasal keratins, K1 (M r 67 000) and K10 (M r 59 000) in the first spinous cell layer (Roop et al. 1988). Proliferating cells do not express K1 or K10 in normal epidermis. As cells migrate into the granular cell layer, K1 and K10 transcripts diminish and the genes for filaggrin, a M r 27 000 interfilamentous matrix protein, and loricrin, a major component of the cornified envelope, are activated and the proteins synthesized (Mehrel et al. 1990; Roop et al. 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balmain A, Brown K (1988) Oncogene activation in chemical carcinogenesis. Adv Cancer Res 51: 147–182

    Article  PubMed  CAS  Google Scholar 

  • Burns FJ, Vanderlaan M, Sivak A, Albert RA (1976) Regression kinetics of mouse skin papillomas. Cancer Res 36: 1422–1427

    PubMed  CAS  Google Scholar 

  • Cheng C, Kilkenny AE, Roop D, Yuspa SH (1990) The v-ras oncogene inhibits the expression of differentiation markers and facilitates expression of cytokeratins 8 and 18 in mouse keratinocytes. Mol Carcinog 3: 363–373

    Article  PubMed  CAS  Google Scholar 

  • Dale BA, Holbrook KA (1987) Developmental expression of human epidermal keratins and filaggrin. Dev Biol 22: 127–151

    CAS  Google Scholar 

  • Dlugosz AA, Yuspa SH (1991) Staurosporine induces protein kinase C agonist effects and maturation of normal and neoplastic mouse keratinocytes in vitro. Cancer Res 51: 4677–4684

    PubMed  CAS  Google Scholar 

  • Dlugosz AA, Pettit GR, Yuspa SH (1990) Involvement of Protein kinase C in Ca2+mediated differentiation on cultured primary mouse keratinocytes. J Invest Dermatol 94: 519

    Google Scholar 

  • Fleischman LF, Chahwala SB, Cantley L (1986) Ras-Transformed cells: altered levels of phosphatidylinositol-4,5-biphosphate and catabolites. Science 231: 407–410

    Article  PubMed  CAS  Google Scholar 

  • Glick AB, Sporn MB, Yuspa SH (1991) Altered regulation of TGF-beta 1 and TGFalpha in primary keratinocytes and papillomas expressing v-Ha-ras. Mol Carcinog 4: 210–219

    Article  PubMed  CAS  Google Scholar 

  • Haliotis T, Trimble W, Chow S et al. (1990) Expression of ras oncogene leads to down-regulation of protein kinase C. Int J Cancer 45: 1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Hennings H, Michael D, Lichti U, Yuspa SH (1987) Response of carcinogen-altered mouse epidermal cells to phorbol ester tumor promoters and calcium. J Invest Dermatol 88: 60–65

    Article  PubMed  CAS  Google Scholar 

  • Hennings H, Kruszewski FH, Yuspa SH, Tucker RW (1989) Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes. Carcinogenesis 10: 777–780

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Chida K, Kamata N et al. (1988) Enhancement of inositol phospholipid metabolism and activation of protein kinase C in ras-transformed rat fibroblasts. J Biol Chem 263: 17975–17980

    PubMed  CAS  Google Scholar 

  • Huitfeldt HS, Heyden A, Clausen OPF, Thrane EV, Roop D, Yuspa SH (1991) Altered regulation of growth and expression of differentiation-associated keratins in benign mouse skin tumors. Carcinogenesis 12: 2063–2067

    Article  PubMed  CAS  Google Scholar 

  • Jaken S, Yuspa SH (1988) Early signals for keratinocyte differentiation: role of Ca2+-mediated inositol lipid metabolism in normal and neoplastic epidermal cells. Carcinogenesis 9: 1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa U, Kishimoto A, Nishizuka Y (1989) The protein kinase C family: heterogeneity and its implications. Annu Rev Biochem 58: 31–44

    Article  PubMed  CAS  Google Scholar 

  • Kruszewski FH, Hennings H, Tucker RW, Yuspa SH (1991) Differences in the regulation of intracellular calcium in normal and neoplastic keratinocytes are not caused by ras gene mutations. Cancer Res 51: 4206–4212

    PubMed  CAS  Google Scholar 

  • Lacal JC, de la Pena P, Moscat J, Garcia-Barreno P, Anderson PS, Aaronson SA (1987) Rapid stimulation of diacylglycerol production in Xenopus oocytes by microinjection of H-ras p21. Science 238: 533–536

    Article  PubMed  CAS  Google Scholar 

  • Lacal JC, Cuadrado A, Jones JE et al. (1990) Regulation of protein kinase C activity in neuronal differentiation induced by the N-ras oncogene in PC-12 cells. Mol Cell Biol 10: 2983–2990

    PubMed  CAS  Google Scholar 

  • Lee E, Yuspa SH (1990) Keratinocytes infected with a virus containing v-ras Ha have elevated inositol phosphate metabolism. Proc Am Assoc Cancer Res 31: 76

    Google Scholar 

  • Lee E, Yuspa SH (1991a) Aluminum fluoride stimulates inositol phosphate metabolism and inhibits expression of differentiation markers in mouse keratinocytes. J Cell Physiol 148: 106–115

    Article  PubMed  CAS  Google Scholar 

  • Lee E, Yuspa SH (1991b) Changes in inositol phosphate metabolism are associated with terminal differentiation and neoplasia in mouse keratinocytes. Carcinogenesis 12: 1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Lichti U, Yuspa SH (1988) Modulation of tissue and epidermal transglutaminases in mouse epidermal cells after treatment with 12-O-tetradecanoylphorbol-13-acetate and/or retinoic acid in vivo and in culture. Cancer Res 48: 74–81

    PubMed  CAS  Google Scholar 

  • Mehrel T, Hohl D, Rothnagel JA et al. (1990) Identification of a major keratinocyte cell envelope protein, loricrin. Cell 61: 1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Molloy CJ, Laskin JD (1987) Specific alterations in keratin biosynthesis in mouse epidermis in vivo and in explant culture following a single exposure to the tumor promoter 12-O-tetradecanoylphorboi-13-acetate. Cancer Res 47: 4674–4680

    PubMed  CAS  Google Scholar 

  • Morris A, Steinberg ML, Defendi V (1985) Keratin gene expression in simian virus 40-transformed human keratinocytes. Proc Natl Acad Sci USA 82: 8498–8502

    Article  PubMed  CAS  Google Scholar 

  • Nischt R, Roop DR, Mehrel T et al. (1988) Aberrant expression during two-stage mouse skin carcinogenesis of type I 47-kDa Keratin, K13, normally associated with terminal differentitation of internal stratified epithelia. Mol Carcinog 1: 96–108

    Article  PubMed  CAS  Google Scholar 

  • Osada S, Mizuno K, Saido TC et al. (1990) A phorbol ester receptor/protein kinase, nPKC„, a new member of the protein kinase C family predominatly expressed in lung and skin. J Biol Chem 265: 22434–22440

    PubMed  CAS  Google Scholar 

  • Preiss JE, Loomis CR, Bell RM, Neidel JE (1987) Quantitative measurement of sn-1,2-diacylglycerols. Methods Enzymol 141: 294–300

    Article  PubMed  CAS  Google Scholar 

  • Roop DR, Lowy DR, Tambourin PE et al. (1986) An activated Harvey ras oncogene produces benign tumours on mouse epidermal tissue. Nature 323: 822–824

    Article  PubMed  CAS  Google Scholar 

  • Roop DR, Krieg TM, Mehrel T, Cheng CK, Yuspa SH (1988) Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis. Cancer Res 48: 3245–3252

    PubMed  CAS  Google Scholar 

  • Roop DR, Nakazawa H, Mehrel T et al. (1989) Sequential changes in gene expression during epidermal differentiation. In: Rogers GE, Reis PJ, Ward KA, Marshall RC (eds) The biology of wool and hair. Chapman and Hall, London, pp 311–324

    Google Scholar 

  • Ruegg UT, Burgess GM (1989) Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci 10: 218–220

    Article  PubMed  CAS  Google Scholar 

  • Sako T, Tauber AI, Jeng AY, Yuspa SH, Blumberg PM (1988) Contrasting actions of staurosporine, a protein kinase C inhibitor, on human neutrophils and primary mouse epidermal cells. Cancer Res 48: 4646–4650

    PubMed  CAS  Google Scholar 

  • Strickland JE, Greenhalgh DA, Koceva-Chyla A et al. (1988) Development of murine epidermal cell lines which contain an activated rasHa oncogene and form papillomas in skin grafts on athymic nude mouse hosts. Cancer Res 48: 165–169

    PubMed  CAS  Google Scholar 

  • Strickland JE, Dlugosz AA, Hennings H, Yuspa SH (1991) Staurosporine inhibits tumor formation from grafted mouse papilloma cell lines. Proc Am Assoc Cancer Res 32: 127

    Google Scholar 

  • Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tornita F (1986) Staurosporine, a potent inhibitor of phospholipid/Ca+ + dependent protein kinase. Biochem Biophys Res Commun 135: 397–402

    Article  PubMed  CAS  Google Scholar 

  • Vaidya TB, Weyman CM, Teegarden D, Ashendel CL, Taparowsky EJ (1991) Inhibition of myogenesis by the H-ras oncogene: implication of a role for protein kinase C. J. Cell Biol 114: 809–820

    Article  PubMed  CAS  Google Scholar 

  • Weyman CM, Taparowsky EJ, Wolfson M, Ashendel CL (1988) Partial down-regulation of protein kinase C in C3H 10T1/2 mouse fibroblasts transfected with the human Ha-ras oncogene. Cancer Res 48: 6535–6541

    PubMed  CAS  Google Scholar 

  • Wolfman A, Macara IG (1987) Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts. Nature 325: 359–361

    Article  PubMed  CAS  Google Scholar 

  • Wolfman A, Wingrove TG, Blackshear PJ, Macara IG (1987) Down-regulation of protein kinase C and of an endogenous 80-kDa substrate in transformed fibroblasts. J Biol Chem 262: 16546–16552

    PubMed  CAS  Google Scholar 

  • Yuspa SH (1985) Cellular and molecular changes during chemical carcinogenesis in mouse skin cells. In: Huberman E, Barr SH (eds) Carcinogenesis. Raven, New York, pp 201–209

    Google Scholar 

  • Yuspa SH, Morgan DL (1981) Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature 293: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Yuspa SH, Ben T, Hennings H, Lichti U (1982) Divergent responses in epidermal basal cells exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 42: 2344–2349

    PubMed  CAS  Google Scholar 

  • Yuspa SH, Vass W, Scolnick E (1983) Altered growth and differentiation of cultured mouse epidermal cells infected with oncogenic retrovirus: contrasting effects of viruses and chemicals. Cancer Res 43: 6021–6030

    PubMed  CAS  Google Scholar 

  • Yuspa SH, Kilkenny AE, Stanley J, Lichti U (1985) Keratinocytes blocked in phorbol ester-responsive early stage of terminal differentiation by sarcoma viruses. Nature 314: 459–462

    Article  PubMed  CAS  Google Scholar 

  • Yuspa SH, Kilkenny AE, Roop DR et al. (1989a) Consequences of exposure to initiating levels of carcinogens in vitro and in vivo: altered differentiation and growth, mutations, and transformation. In: Slaga TJ, Klein-Szanto AJP, Boutwell RK, Stevenson DE, Spitzer HL, D’Motto B (eds) Skin carcinogenesis: mechanisms and human relevance. Liss, New York, pp 127–135

    Google Scholar 

  • Yuspa SH, Kilkenny AE, Steinert PM, Roop DR (1989b) Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol 109: 1207–1217

    Article  PubMed  CAS  Google Scholar 

  • Ziboh VA, Isseroff RR, Pandey R (1984) Phospholipid metabolism in calcium-regulated differentiation in cultured murine keratinocytes. Biochem Biophys Res Commun 122: 1234–1240

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Yuspa, S.H. et al. (1993). The In Vitro Analysis of Biochemical Changes Relevant to Skin Carcinogenesis. In: Hecker, E., Jung, E.G., Marks, F., Tilgen, W. (eds) Skin Carcinogenesis in Man and in Experimental Models. Recent Results in Cancer Research, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84881-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84881-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84883-4

  • Online ISBN: 978-3-642-84881-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics