Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 72))

  • 122 Accesses

Abstract

A powerful method of detecting first order transitions by numerical simulations of finite systems is presented. The method relies on simulations and the finite size scaling properties of free energy barriers between coexisting states. It is demonstrated that the first order transitions in d = 2, q = 5 and d = q = 3 Potts models are easily seen with modest computing time. The method can also be used to obtain quite accurate estimates of critical exponents by studying the barriers in the vicinity of a critical point. Some new results on exponents and conformal charge in frustrated XY models and a related coupled XY-Ising model in d = 2 are presented. These show that the transitions in these models are in new universality classes and that the conformal charge varies with a parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.B. Potts, Proc. Camb. Phil. Soc. 48, 106 (1952); F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. P. Peczak and D.P. Landau, Phys. Rev. B39, 11932 (1989).

    ADS  Google Scholar 

  3. M.S.S. Challa, D.P. Landau and K. Binder, Phys. Rev. B34, 184 (1986).

    ADS  Google Scholar 

  4. J.F. McCarthy, Phys. Rev. B41, 9530 (1990).

    ADS  Google Scholar 

  5. M. Fukugita, II. Mino, M. Okawa and A. Ukawa, J. Phys. A23, L561, (1990).

    ADS  Google Scholar 

  6. K. Binder, Rep. Prog. Phys. 50 783 (1987).

    Article  ADS  Google Scholar 

  7. K. Binder, Monte Carlo Methods in Statistical Physics, ed. K. Binder, Topics in Current Physics, (Springer, Berlin, Heidelberg and New York, 1979) vol. 7, p. 1.

    Google Scholar 

  8. D.P. Landau and K. Binder, Phys. Rev. B17, 2328 (1978).

    ADS  Google Scholar 

  9. K. Binder and D.P. Landau, Phys. Rev. B21, 1941 (1980).

    ADS  Google Scholar 

  10. K. Binder, Phys. Rev. Lett., 47, 693 (1981); Z. Phys. B43, 119 (1981).

    Article  ADS  Google Scholar 

  11. J. Lee and J.M. Kosterlitz, Phys. Rev. B43, 1268 (1991).

    ADS  Google Scholar 

  12. J. Lee and J.M. Kosterlitz, Phys. Rev. Lett. 65 137 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. M.N. Barber, “Phase Transitions and Critical Phenomena,”eds. C. Domb and J.L. Lebowitz (Academic, New York, 1983), Vol. 8, p. 145.

    Google Scholar 

  14. For recent reviews see “Finite Size Scaling and Numerical Simulations of Statistical Systems, ed. V. Privman (World Scientific, Singapore, 1990).

    Google Scholar 

  15. E. Eisenriegier and R. Tomaschitz, Phys. Rev. B35, 4876 (1987).

    ADS  Google Scholar 

  16. A.M. Ferrenberg and R.H. Swendsen, Phys..Rev. Lett. 61, 2635 (1988)

    Article  ADS  Google Scholar 

  17. R.H. Swendsen and J-S Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  18. J. Lee and J.M. Kosterlitz, Phys. Rev. B43, 3265, (1991).

    ADS  Google Scholar 

  19. J. Lee, Ph.D. Thesis (unpublished).

    Google Scholar 

  20. S. Teitel and C. Jayaprakash, Phys. Rev. Lett. 51, 199 (1983); W.Y. Shih and D. Stroud, Phys. Rev. B32, 158 (1985).

    Article  Google Scholar 

  21. J. Villain, J. Phys. C10, 1717 (1977); ibid. 10, 4793 (1977).

    ADS  Google Scholar 

  22. S. Miyashita and II. Shiba, J. Phys. Soc. Jpn. 53, 1145 (1984); D.H. Lee, J.D. Joannopoulos, J.W. Negele and D.P. Landau, Phys. Rev. B33, 450 (1986).

    Article  ADS  Google Scholar 

  23. T.C. Halsey, J. Phys. C18, 2437 (1986); S.E. Kurshonov and G.V. Uimin, J. Stat. Phys. 43, 1 (1986).

    ADS  Google Scholar 

  24. B. Berge., H. Diep, A. Ghazali and P. Lallemand, Phys. Rev. B34, 3177 (1986).

    ADS  Google Scholar 

  25. E. Granato, J.M. Kosterlitz, J. Lee and P.M. Nightingale, Phys. Rev. Lett. 66, (1991) in press.

    Google Scholar 

  26. J. Lee, E. Granato and J.M. Kosterlitz, unpublished.

    Google Scholar 

  27. J.M. Thijssen and II.J.F. Knops, Phys. Rev. B42, 4797 (1990).

    Google Scholar 

  28. J.M. Thijssen and H.J.F. Knops, Phys. Rev. B37, 7738 (1988).

    ADS  Google Scholar 

  29. G. Grest, Phys. Rev. B39, 9267 (1989).

    ADS  Google Scholar 

  30. A.B. Zamolodchikov, JETP Lett. 43, 732 (1986).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kosterlitz, J.M., Lee, J., Granato, E. (1993). A New Numerical Method to Study Phase Transitions. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics IV. Springer Proceedings in Physics, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84878-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84878-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84880-3

  • Online ISBN: 978-3-642-84878-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics