Nonlinear Excitations in Magnetic Chains

  • H. Grille
  • R. W. Gerling
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 72)

Abstract

The time dependent behavior of the classical, ferromagnetic xy-chain and the anisotropic Heisenberg chain in a symmetry breaking magnetic field was studied using a very fast, vectorized spin-dynamics method. The equations of motion were integrated using starting configurations determined by Monte-Carlo simulations. By calculating spin-spin correlation functions and taking space-time Fourier transforms we determined S(q, ω) for a wide range of fields and temperatures. We identify and measure the characteristics of single spin-wave peaks and two spin-wave sum peaks, as well as central peaks due to both soliton and two spin-wave difference processes. These results for the two models are discussed in the light of existing theory.

Keywords

Anisotropy Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Steiner, J. Villain and CG. Windsor, Adv. in Physics 25, 87 (1976).CrossRefADSGoogle Scholar
  2. 2.
    M. Steiner, K. Kakurai and J.K. Kjems, Z. Phys. B 53, 117 (1983).CrossRefADSGoogle Scholar
  3. 3.
    A.P. Ramirez and W.P. Wolf, Phys. Rev. Lett. 49, 227 (1982).CrossRefADSGoogle Scholar
  4. 4.
    J.P. Boucher, L.P. Regnault, J. Rossat-Mignot, J.P. Renard, J. Bouillot and W.G. Stirling, J. Appl. Phys. 52, 1956 (1982); J.P. Boucher, L.P. Regnault, A. Pires, J. Rossat-Mignot, Y. Henry, J. Bouillot, W.G. Stirling and J.P. Renard, In Magnetic Excitations and Fluctuations, ed. by S.W. Lovesey, U. Balucani, F. Borsa and V. Tognetti (Springer, Berlin, Heidelberg 1984).Google Scholar
  5. 5.
    F. Borsa, Phys. Rev. B 25, 3430 (1982); F. Borsa, M.G. Pini, A. Rettori and V. Tognetti, Phys. Rev. B 28, 5173 (1983).CrossRefADSGoogle Scholar
  6. 6.
    K. Kopinga, A.M.C. Tinus, and W.J.M. de Jonge, Phys. Rev. B 29, 2868 (1984), A.M.C. Tinus, W.J.M. de Jonge and K. Kopinga, Phys. Rev. B 32, 3154 (1985).CrossRefADSGoogle Scholar
  7. 7.
    T. Goto and Y. Yamaguchi, J. Phys. Soc. Jap. 50, 2133 (1981).CrossRefADSGoogle Scholar
  8. 8.
    H.J. Mikeska, J. Phys. C 11, L29 (1978).CrossRefGoogle Scholar
  9. 9.
    E. Allroth and H.J. Mikeska, Z. Phys. B 43, 209 (1981).CrossRefADSGoogle Scholar
  10. 10.
    C. Etrich, H.J. Mikeska, E. Magyari, H. Thomas and R. Weber, Z. Phys. B 62, 97 (1985).CrossRefADSGoogle Scholar
  11. 11.
    See e.g., Magnetic Excitations and Fluctuations eds. S.W. Lovesey, U. Balucani, F. Borsa and V. Tognetti, (Springer, Berlin, Heidelberg, 1984).CrossRefGoogle Scholar
  12. 12.
    R.W. Gerling and D.P. Landau, J. Magn & Magn. Mat. 45, 267 (1984).CrossRefADSGoogle Scholar
  13. 13.
    R.W. Gerling and D.P. Landau, Magnetic Excitations and Fluctuations eds. S.W. Lovesey, U. Balucani, F. Borsa and V. Tognetti, (Springer, Berlin, Heidelberg, 1984).Google Scholar
  14. 14.
    M. Staudinger, R.W. Gerling, C.S.S. Murty and D.P. Landau, J. Appl. Phys. 57, 3335 (1985).CrossRefADSGoogle Scholar
  15. 15.
    R.W. Gerling, M. Staudinger and D.P. Landau, J. Magn. & Magn. Mat. 54-57, 819 (1986).CrossRefADSGoogle Scholar
  16. 16.
    D.P. Landau, R.W. Gerling and M.S.S. Challa, Magnetic Excitations and Fluctuations II eds. U. Balucani, S.W. Lovesey, M.G. Rasetti and V. Tognetti (Springer, Berlin, Heidelberg 1987).Google Scholar
  17. 17.
    R.W. Gerling and D.P. Landau, Phys. Rev. B 37, 6092 (1988).CrossRefADSGoogle Scholar
  18. 18.
    R.W. Gerling, Comp. Phys. Rep. 7, 73 (1988).CrossRefADSGoogle Scholar
  19. 19.
    R.W. Gerling and D.P. Landau, Phys. Rev. B 41, 7139 (1990).CrossRefADSGoogle Scholar
  20. 20.
    K. Binder and D.P. Landau, Phys. Rev. B 13, 1140 (1976).CrossRefADSGoogle Scholar
  21. 21.
    see e.g. R.L. Burden, J.D. Fairas, and A.C. Reynolds, Numerical Analysis, (Prindle, Weber and Schmidt, Boston, 1978).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. Grille
    • 1
  • R. W. Gerling
    • 1
  1. 1.Institut für Theoretische Physik IUniversität Erlangen-NürnbergErlangenFed. Rep. of Germany

Personalised recommendations