Critical Properties of Strongly Interacting Bosons on a Lattice

  • G. G. Batrouni
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 72)


We use quantum Monte Carlo techniques to study the critical properties of an interacting boson model in one dimension with and without disorder. In the absence of disorder, the phase diagram consists of a Mott insulating phase at commensurate fillings and a superfluid phase. The effect of disorder is to shrink the Mott insulator phase and to cause the emergence of two new insulating regions. Our simulations are the first to demonstrate the existence and study the properties of the predicted “Bose glass” phase as well as an unanticipated Anderson-like insulating regime. For the uniform system, we study the critical behaviour of the superfluid density and the compressibility, and measure the exponents v and z, which agree with predictions based on a scaling analysis.


Critical Exponent Universality Class Mott Insulator Imaginary Time Interact Boson Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.G. Batrouni, R.T. Scalettar and G.T. Zimanyi, Phys. Rev. Lett., 65, 1765 (1990).CrossRefADSGoogle Scholar
  2. 2.
    G.G. Batrouni, R.T. Scalettar and G.T. Zimanyi, submitted to Phys. Rev. Lett.Google Scholar
  3. 3.
    R. T. Scalettar and G. G. Batrouni, under preparation.Google Scholar
  4. 4.
    P. W. Anderson, Proc. Int. Enrico Fermi School of Physics (North Holland, Amsterdam, 1987).Google Scholar
  5. 5.
    E. Abrahams, P. W. Anderson, G. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).CrossRefADSGoogle Scholar
  6. 6.
    A. M. Finkelshtein, Zh. Eksp, Theor. Phys. 84, 168 (1983); C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B30, 527 (1984); D. Belitz and T. Kirkpatrick, Phys. Rev. Lett. 63, 1296 (1989); G. T. Zimanyi and E. Abrahams, Phys. Rev. Lett.64, 2719 (1990).Google Scholar
  7. 7.
    D.B. Haviland, Y. Liu and A. Goldman, Phys. Rev. Lett. 62, 2180 (1989); A.E. White, R.C. Dynes and J.P. Garno, Phys. Rev. B33, 3549 (1986).CrossRefADSGoogle Scholar
  8. 8.
    N. Giordano and E.R. Schuler, Phys. Rev. Lett. 63, 2417 (1989).CrossRefADSGoogle Scholar
  9. 9.
    J.D. Reppy, Physica, (Utrecht) 126B, 335 (1984).Google Scholar
  10. 10.
    F.D.M. Haldane, Phys. Lett, 80A, 281 (1980); T.C. Choy and F.D.M. Haldane, ibid. 90A, 83 (1982).ADSMathSciNetGoogle Scholar
  11. 11.
    M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B40, 546 (1989)ADSGoogle Scholar
  12. 12.
    J.E. Hirsch, R.L. Sugar, D.J. Scalapino, and R. Blankenbecler, Phys. Rev. B26, 5033 (1982).ADSGoogle Scholar
  13. 13.
    M. Suzuki, K. Miyashita, and A. Kuroda, Prog. Theor. Phys. 58, 1377 (1977).CrossRefMATHADSGoogle Scholar
  14. 14.
    M. Banna and B.S. Shastry, Phys. Rev. B18, 3351 (1978).ADSGoogle Scholar
  15. 15.
    H.F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    M. Suzuki, Phys. Lett, 113A, 299 (1985); R.M. Fye, Phys. Rev. B33, 6271 (1986); and R.M. Fye and R.T. Scalettar Phys. Rev. B36, 3833 (1987).ADSGoogle Scholar
  17. 17.
    E. L. Pollock and D. M. Ceperley, Phys. Rev. B36, 8343 (1987).ADSGoogle Scholar
  18. 17.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefADSGoogle Scholar
  19. 18.
    T. Giamarchi and H.J. Schulz, Phys. Rev. B37, 325 (1988).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. G. Batrouni
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations