Contributions of Scanning Tunneling Microscopy for Probing and Manipulating Electronic Properties in Low Dimensions

  • R. Wiesendanger
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 111)


Scanning tunneling microscopy (STM) is well known for its atomic resolution capability in direct space for surfaces of conducting materials. However, at first place, STM is a spectroscopic technique because the obtained images are usually bias-dependent, particularly for semiconductors. The investigation of this bias-dependence provides a key for probing electronic properties on a local scale down to atomic dimensions. Recently, it has been shown that STM can even be made sensitive to the difference in the spin configuration between neighbouring lattice sites by using ferromagnetic probe tips. With this spin-sensitive STM, a 2D Wigner glass state at the (001) surface of magnetite has directly been observed in real space at room temperature.

The finely focused, low energetic electron beam in STM can also be used for the fabrication of nanometer scale structures as well as for the modification of the local electronic structure, ultimately at the atomic level. The modified structures can subsequently be probed by STM itself.


Scan Tunneling Microscopy Spin Configuration Tunneling Spectroscopy Verwey Transition Electronic Surface Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Binnig, H. Rohrer: Rev. Mod. Phys. 59, 615 (1987)CrossRefGoogle Scholar
  2. [2]
    R.J. Hamers: Annu. Rev. Phys. Chem. 40, 531 (1989)CrossRefGoogle Scholar
  3. [3]
    R.M. Feenstra in: Scanning Tunneling Microscopy and Related Methods, ed. by R.J. Behm, N. Garcia, and H. Rohrer, NATO ASI Series E: Appl. Sci. Vol. 184, Kluwer, Dordrecht 1990, p. 211Google Scholar
  4. [4]
    H.F. Hess, R.B. Robinson, J.V. Waszczak: Physica B169, 422 (1991)CrossRefGoogle Scholar
  5. [5).
    J.C. Slonczewski: Phys. Rev. B39, 6995 (1989)CrossRefGoogle Scholar
  6. [6).
    R. Wiesendanger, H.-J. Güntherodt, G. Güntherodt, R.J. Gambino, R. Ruf: Phys. Rev. Lett. 65, 247 (1990)CrossRefGoogle Scholar
  7. [7]
    J R. Wiesendanger, I.V. Shvets, D. Bürgler, G. Tarrach, H.-J. Güntherodt, J.M.D. Coey: Z. Phys. B86, 1 (1992)CrossRefGoogle Scholar
  8. [8]
    O. Albrektsen, D.J. Arent, H.P. Meier, H.W.M. Salemink: Appl. Phys. Lett. 57, 31 (1990)CrossRefGoogle Scholar
  9. [9).
    J.S. Weiner, H.F. Hess, R.B. Robinson, T.R. Hayes, D.L. Sivco, A.Y. Cho, M. Ranade: Appl. Phys. Lett. 58, 2402 (1991)CrossRefGoogle Scholar
  10. [10]
    E. Wigner: Trans. Far. Soc. 34, 678 (1938)CrossRefGoogle Scholar
  11. [11]
    H.W. Jiang, R.L. Willett, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. West: Phys. Rev. Lett. 65, 633 (1990)CrossRefGoogle Scholar
  12. [12]
    C.C. Grimes, G. Adams: Phys. Rev. Lett. 42, 795 (1979).CrossRefGoogle Scholar
  13. [13]
    E.J.W. Verwey: Nature 144, 327 (1939)CrossRefGoogle Scholar
  14. [14]
    N.F. Mott: Metal-Insulator Transitions, Taylor and Francis, London 1974Google Scholar
  15. [15]
    N.F. Mott in: Festkörperprobleme XIX, ed. by J. Treusch, Vieweg 1979, p. 331Google Scholar
  16. [16]
    S. Lida, K. Mizushima, M. Mizoguchi, K. Kose, K. Kato, K. Yanai, N. Goto, S. Yumoto: J. Appl. Phys. 53, 2164 (1982)CrossRefGoogle Scholar
  17. [17]
    J.R. Cullen, E.R. Callen: Phys. Rev. 87, 397 (1973)Google Scholar
  18. [18]
    R. Wiesendanger, I.V. Shvets, D. Bürgler, G. Tarrach, H.-J. Güntherodt, J.M.D. Coey, S. Gräser: Science 255, 583 (1992)CrossRefGoogle Scholar
  19. [19]
    I.V. Shvets, R. Wiesendanger, D. Bürgler, G. Tarrach, H.-J. Güntherodt, J.M.D. Coey: submittedGoogle Scholar
  20. [20]
    R. Wiesendanger, I.V. Shvets, D. Bürgler, G. Tarrach, H.-J. Güntherodt, J.M.D. Coey: submittedGoogle Scholar
  21. [21]
    J.B. Goodenough: Progress of Solid State Chem. Vol. 5, p. 308 (1971)Google Scholar
  22. [22]
    R. Wiesendanger, I.V. Shvets, J.M.D. Coey, D. Bürgler, G. Tarrach, H.-J. Güntherodt: submittedGoogle Scholar
  23. [23]
    R.S. Becker, G.S. Higashi, Y.J. Chabal, A.J. Becker: Phys. Rev. Lett. 65, 1917 (1990)CrossRefGoogle Scholar
  24. [24]
    Ph. Avouris, I.-W. Lyo: Surf. Sci. 242, 1 (1991)CrossRefGoogle Scholar
  25. [25]
    R.C. Barrett, C.F. Quate: J. Appl. Phys. 70, 2725 (1991).CrossRefGoogle Scholar
  26. [26]
    E. Hartmann, R.J. Behm, G. Krötz, G. Müller, F. Koch: Appl. Phys. Lett. 59, 2136 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. Wiesendanger
    • 1
  1. 1.Department of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations