Optical Properties of Quantum Wires Grown on Nonplanar Substrates

  • E. Kapon
  • M. Walther
  • J. Christen
  • M. Grundmann
  • D. M. Hwang
  • E. Colas
  • D. Bimberg
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 111)


The structure and luminescence properties of GaAs/AlGaAs quantum wires (QWRs) grown by organometallic chemical vapor deposition on nonplanar substrates are described. These crescent-shaped QWRs, as narrow as 10nm in effective width, are formed at the bottom of channels etched into the substrate prior to epitaxy. The wires exhibit high luminescence efficiency and carrier lifetimes comparable to those measured in quantum wells (QWLs) owing to their in situ formation, which minimizes interface defects. Quasi-one dimensional subbands are observed in photoluminescence (PL), PL excitation and amplified spontaneous emission spectra of these QWRs. PL and time-resolved cathodoluminescence studies reveal efficient carrier capture into the QWRs via QWL layers connected to the wires. Application of these structures in efficient QWR lasers is also discussed.


Carrier Lifetime Amplify Spontaneous Emission Heavy Hole Light Hole Confinement Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D.A.B. Miller, D.S. Chemla and S. Schmitt-Rink, Appl. Phys. Lett. 52, 2154 (1988).CrossRefGoogle Scholar
  2. [2]
    Y. Arakawa and A. Yariv, IEEE J. Quantum Electron. QE-22, 1887 (1986).Google Scholar
  3. [3]
    L. Banyai, I. Galbraith, C. Ell and H. Haug, Phys. Rev. B 36, 6099 (1987).CrossRefGoogle Scholar
  4. [4]
    F.A.P. Osorio, M.H. Degani and O. Hipolito, Phys. Rev. B 37, 1402 (1987).CrossRefGoogle Scholar
  5. [5]
    H. Sakaki, Jpn. J. Appl. Phys. 28, L314 (1989).CrossRefGoogle Scholar
  6. [6]
    A. Izrael, B. Sermage, J.Y. Marzin, A. Ougazzaden, R. Azoulay, J. Etrillard, V. Thierry-Mieg and L. Henry, Appl. Phys. Lett. 56, 830 (1990).CrossRefGoogle Scholar
  7. [7]
    J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard and J.H. English, Appl. Phys. Lett. 49, 1275 (1986).CrossRefGoogle Scholar
  8. [8]
    M. Tsuchiya, J.M. Gaines, R.H. Yan, R.J. Simes, P.O. Holtz, L.A. Coldren and P.M. Petroff, Phys. Rev. Lett. 62, 466 (1989).CrossRefGoogle Scholar
  9. [9]
    D. Gershoni, J.S. Weiner, S.N.G. Chu, G.A. Baraff, J.M. Vandenberg, L.N. Pfeiffer, K. West, R.A. Logan and T. Tanbun-Ek, Phys. Rev. Lett. 65, 1631 (1990).CrossRefGoogle Scholar
  10. [10]
    E. Kapon, M.C. Tamargo and D.M. Hwang, Appl. Phys. Lett. 50, 347 (1987).CrossRefGoogle Scholar
  11. [11]
    E. Kapon, D.M. Hwang and R. Bhat, Phys. Rev. Lett. 63, 430 (1989).CrossRefGoogle Scholar
  12. [12]
    S. Simhony, E. Kapon, E. Colas, D.M. Hwang, N.G. Stoffel and P. Worland, Appl. Phys. Lett. 59, 2225 (1991).CrossRefGoogle Scholar
  13. [13]
    E. Kapon, M. Walther, D.M. Hwang, E. Colas, C. Chen and L.M. Schiavone, 1991 Annual Meeting of the Optical Society of America, November 3–8, 1991, San Jose, California, Postdeadline paper PD 16.Google Scholar
  14. [14]
    J. Christen, E. Kapon, E. Colas, D.M. Hwang, L.M. Schiavone, M. Grundmann and D. Bimberg, Surf. Sci. (in print).Google Scholar
  15. [15]
    M. Walther, E. Kapon, D.M. Hwang, E. Colas and L. Nunes, Phys. Rev. B, Rap. Commun. March 1992 (in print).Google Scholar
  16. [16]
    J. Christen, M. Grundmann, E. Kapon, E. Colas, D.M Hwang and D. Bimberg, to be published.Google Scholar
  17. [17]
    M. Asada, Y. Miyamoto and Y. Suematsu, Jpn. J. Appl. Phys. 24, L95 (1985).CrossRefGoogle Scholar
  18. [18]
    U. Bockelmann and G. Bastard, Europhys. Lett. 15, 215 (1991).CrossRefGoogle Scholar
  19. [19]
    M. Walther, E. Kapon, J. Christen, D.M. Hwang and R. Bhat, Appl. Phys. Lett. 60, 521 (1992).CrossRefGoogle Scholar
  20. [20]
    E. Kapon, D.M. Hwang, M. Walther, R. Bhat and N.G. Stoffel, Surf. Sci. (in print).Google Scholar
  21. [21]
    H. Hilmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H.P. Meier and K. Ploog, Phys. Rev. B 39, 10 901 (1989).Google Scholar
  22. [22]
    H. Hilmer, A. Forchel, R. Sauer and C.W. Tu, Phys. Rev. B 42, 3220 (1990).CrossRefGoogle Scholar
  23. [23]
    J. Christen and D. Bimberg, Surf. Sci. 174, 261 (1986).CrossRefGoogle Scholar
  24. [24]
    E.O. Goebel, H. Jung, J. Kuhl and K. Ploog, Phys. Rev. Lett. 51, 1588 (1983).CrossRefGoogle Scholar
  25. [25]
    J. Christen, D. Bimberg, A. Steckenborn and G. Weimann, Appl. Phys. Lett. 44, 84 (1984).CrossRefGoogle Scholar
  26. [26]
    G. Mayer, B.E. Maile, R. Germann, A. Forchel, P. Grambow and H.P. Meier, Appl. Phys. Lett. 56, 2016 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • E. Kapon
    • 1
  • M. Walther
    • 1
  • J. Christen
    • 2
  • M. Grundmann
    • 1
    • 2
  • D. M. Hwang
    • 1
  • E. Colas
    • 1
  • D. Bimberg
    • 2
  1. 1.BellcoreRed BankUSA
  2. 2.Institut für Festkörperphysik ITechnische Universität BerlinBerlin 12Fed. Rep. of Germany

Personalised recommendations