Cyclotron Resonance of Mixed Phases of a 2-D System in the Ultra-Quantum Limit

  • R. J. Nicholas
  • G. M. Summers
  • M. Watts
  • R. J. Warburton
  • J. G. Michels
  • R. A. Lewis
  • J. J. Harris
  • C. T. Foxon
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 111)

Abstract

Cyclotron resonance on low density, high mobility 2-D electron systems in the ultra quantum limit shows a split and shifted resonance, corresponding to the presence of mixed phases of the system. The strength of the two components is strongly temperature and occupancy dependent, with a 100% low temperature phase achieved at temperatures close to the classical Wigner solid melting condition. The low density limit of the splitting is close to the single particle spin splitting seen in bulk GaAs, and can be strongly temperature and magnetic field dependant. Studies of ODCR show that the different PL transitions seen at high fields have opposite modulation by the CR absorption.

Keywords

GaAs HeNe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.Y. Andrei et al, Phys. Rev. Lett. 60 2765 (1988); D.C. Glattli et al, Surf. Sci. 229 344 (1990)Google Scholar
  2. 2.
    R.L. Willett et al., Phys. Rev. B38 7881 (1988)CrossRefGoogle Scholar
  3. 3.
    VJ. Goldman et al., Phys. Rev. Lett. 65 2188 (1990)Google Scholar
  4. 4.
    H.W. Jiang et al., Phys. Rev. Lett. 65 633 (1990)CrossRefGoogle Scholar
  5. 5.
    F.I.B. Williams et al, Phys. Rev. Lett. 66 3285 (1991)CrossRefGoogle Scholar
  6. 6.
    H. Buhmann et al, Phys. Rev. Lett. 66 926 (1991)CrossRefGoogle Scholar
  7. 7.
    A.J. Turberfield et al. Surf. Sci. in press (1992)Google Scholar
  8. 8.
    I.V. Kukushkin et al., Surf. Sci., in press (1992)Google Scholar
  9. 9.
    B.I. Halperin and D.R. Nelson, Phys. Rev. Lett. 41 121 (1977); Phys. Rev. B19 2457 (1979); A.P. Young, Phys. Rev. B19 1855 (1979)Google Scholar
  10. 10.
    C.A. Murray and D.H. van Winkle, Phys. Rev. Lett. 58 1200 (1987)CrossRefGoogle Scholar
  11. 11.
    C.T. Foxon et al., Semicond. Sci. and Technol. 4 582 (1989)CrossRefGoogle Scholar
  12. 12.
    H. Sigg et al, Solid State Commun. 48 897 (1983)CrossRefGoogle Scholar
  13. 13.
    M.A. Hopkins et al, Semicond. Sci. and Technol. 2 568 (1987)CrossRefGoogle Scholar
  14. 14.
    C. Kallin and B.I. Halperin, Phys. Rev. B31 3635 (1985)Google Scholar
  15. 15.
    Z. Schlesinger, W. Wang & A. MacDonald, Phys. Rev. Let. 58 73 (1987)CrossRefGoogle Scholar
  16. 16.
    A.H. MacDonald and C. Kallin, Phys. Rev. B40 5795 (1989)Google Scholar
  17. 17.
    M. Watts et al., Proc. ICPS, Thessaloniki, Ed. E.M. Anastassakis, J.D. Joannopoulos p. 1465 ( World Scientific, Singapore, 1991 )Google Scholar
  18. 18.
    T.P. Chakraborty, P. Pietiläinen and F.C. Zhang, Phys. Rev. Lett. 57 130 (1986); Phys. Rev. B30 7320 (1984)Google Scholar
  19. 19.
    B. Goldberg et al., Phys. Rev. B44 4406 (1991); Surf. Sci. in press (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • R. J. Nicholas
    • 1
  • G. M. Summers
    • 1
  • M. Watts
    • 1
  • R. J. Warburton
    • 1
  • J. G. Michels
    • 1
  • R. A. Lewis
    • 1
    • 4
  • J. J. Harris
    • 2
  • C. T. Foxon
    • 3
  1. 1.Physics DepartmentClarendon LaboratoryOxfordUK
  2. 2.Semiconductor I.R.C.I.C.S.T.LondonUK
  3. 3.Physics DepartmentNottingham UniversityNottinghamUK
  4. 4.Department of PhysicsUniversity of WollongongAustralia

Personalised recommendations