Finite-Size Scaling in the Dissipative Transport Regime Between Quantum Hall Plateaus

  • S. Koch
  • R. J. Haug
  • K. v. Klitzing
  • K. Ploog
  • M. Razeghi
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 111)


The magnetoresistance of a two-dimensional electron gas shows a novel scaling behaviour in the dissipative transport regime between adjacent integer quantum Hall plateaus when studied in samples of different size. At low temperatures (≥ 25mK) the phase coherence length L in may exceed the size W of small samples (W ≥ 8µm). Under these conditions the width ΔB of the magnetic field region where dissipative transport is observed becomes independent of temperature. Then ΔB only depends on the size of the sample and increases with decreasing size. Thus the critical exponent v of the localization length ξ ∝ (ΔB)v can be determined directly. The resulting exponent v = 2.3±0.1 does not depend on the specific sample and, furthermore, is independent of the (spin-resolved) Landau level. This experimental result agrees with the predictions of several theoretical approaches to the metal-insulator transition in the quantum Hall regime. The effect described occurs both in Hall bars and in Corbino geometries, with essentially identical results. On the other hand, in a Landau level where spin-splitting is not resolved, a considerably larger value of v = 6.5 ± 0.6 is observed for the localization length exponent.


Contact Resistance Half Width Landau Level Maximum Slope Localization Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. v. Klitzing, G. Dorda, and M. Pepper, Phys.Rev.Lett. 45, 494 (1980).CrossRefGoogle Scholar
  2. [2]
    D.C. Tsui, H.L. Störmer, and A.C. Gossard, Phys.Rev.Lett. 48, 1559 (1982).CrossRefGoogle Scholar
  3. [3]
    H.P. Wei, D.C. Tsui, M.A. Paalanen, and A.M.M. Pruisken, Phys.Rev.Lett. 61, 1294 (1988).CrossRefGoogle Scholar
  4. [4]
    J. Wakabayashi, M. Yamane, and S. Kawaji, J.Phys.Soc.Jpn. 58, 1903 (1989).CrossRefGoogle Scholar
  5. [5]
    S. Koch, R.J. Haug, K. v. Klitzing, and K. Ploog, Phys.Rev. B43, 6828 (1991).CrossRefGoogle Scholar
  6. [6]
    S. Koch, R.J. Haug, K. v. Klitzing, and K. Ploog, Phys. Rev. Lett. 67, 883 (1991).CrossRefGoogle Scholar
  7. [7]
    S.A. Trugman, Phys.Rev. B27, 7539 (1983).CrossRefGoogle Scholar
  8. [8]
    T. Ando and H. Aoki, J.Phys.Soc.Jpn. 54, 2238 (1985).CrossRefGoogle Scholar
  9. [9]
    A.M.M. Pruisken, Phys.Rev.Lett. 61 (1988) 1297.CrossRefGoogle Scholar
  10. [10]
    J.T. Chalker and P.D. Coddington, J.Phys. C21, 2665 (1988).Google Scholar
  11. [11]
    G.V. Mil’nikov and I.M. Sokolov, JETP Lett. 48, 536 (1988).Google Scholar
  12. [12]
    B. Huckestein and B. Kramer, Phys.Rev.Lett. 64, 1437 (1990).CrossRefGoogle Scholar
  13. [13]
    For a review see e.g. M. Büttiker, to be published in Semiconductors and Semimetals.Google Scholar
  14. [14]
    H.P. Wei, S.W. Hwang, D.C. Tsui, and A.M.M. Pruisken, Surf. Sci. 229, 34 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • S. Koch
    • 1
  • R. J. Haug
    • 1
  • K. v. Klitzing
    • 1
  • K. Ploog
    • 1
  • M. Razeghi
    • 2
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany
  2. 2.Technological InstituteNorthwestern UniversityEvanstonUSA

Personalised recommendations