Compressibility of the Interacting Two-Dimensional Electron Gas

  • J. P. Eisenstein
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 111)


A new technique has been employed to study the compressibility of the two-dimensional electron gas. This technique, based upon a double-layer 2D system, is typically 100 times more sensitive than the traditional capacitance method. Using high mobility 2D systems we have observed regimes of negative thermodynamic compressibility both at zero magnetic field and in the extreme quantum limit. These regimes signal the dominance of electron-electron interactions over kinetic effects. Negative compressibility anomalies are also found near the fractional Hall states at ν = 1/3 and 2/3. These latter features represent thermodynamic signatures of the interacting quasiparticle gases which exist along with the condensed ground state.


Gate Bias Penetration Field Fractional Quantum Hall Effect Gate Field Gate Bias Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For an early reference to the capacitance method see J.N. Zemel and M. Kaplit, Surf. Sci. 13, 17 (1969).CrossRefGoogle Scholar
  2. T.P. Smith, W.I. Wang, and P.J. Stiles, Phys. Rev. B34, 2995 (1986);Google Scholar
  3. S.V. Kravchenko, D.A. Rinberg, S.G. Semenchinsky, and V.M. Pudalov, Phys. Rev. B42, 3741 (1990);CrossRefGoogle Scholar
  4. V. Mosser, D. Weiss, K.V. Klitzing, K. Ploog, and G. Weimann, Sol. State Commun. 58, 5 (1986).CrossRefGoogle Scholar
  5. 2.
    Frank Stern, unpublished IBM internal memorandum.Google Scholar
  6. 3.
    J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 68, 674 (1992).CrossRefGoogle Scholar
  7. 4.
    J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, Appl. Phys. Lett. 57, 2324 (1990).CrossRefGoogle Scholar
  8. 5.
    S. Nagano, K.S. Singwi, and S. Ohnishi, Phys. Rev. B29, 1209 (1984).Google Scholar
  9. 6.
    B. Tanatar and D.M. Ceperley, Phys. Rev. B39, 5005 (1989).CrossRefGoogle Scholar
  10. 7.
    A.L. Efros, Sol. State Commun. 65, 1281 (1988).CrossRefGoogle Scholar
  11. 8.
    A.L. Efros, Proc. XX Intl. Conf. on the Physics of Semiconductors, (World Scientific, Singapore, 1990), and unpublished.Google Scholar
  12. 9.
    G. Fano and F. Ortolani, Phys. Rev. B37, 8179 (1988).CrossRefGoogle Scholar
  13. 10.
    For a review of the theory of the FQHE see The Fractional Quantum Hall Effect by T. Chakraborty and P. Pietilainen, vol. 85, Springer Series in Solid State Sciences, (Springer-Verlag, Berlin, 1988).Google Scholar
  14. 11.
    A.H. MacDonald and S.M. Girvin, Phys. Rev. B34, 5639 (1986).CrossRefGoogle Scholar
  15. 12.
    A.H. MacDonald, private communication.Google Scholar
  16. 13.
    In collaboration with Jun Hu and A.H. MacDonald.Google Scholar
  17. 14.
    R.L. Willett, M.A. Paalanen, R.R. Ruel, K.W. West, L.N. Pfeiffer, and D.J. Bishop, Phys. Rev. Lett. 65, 112 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. P. Eisenstein
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations