Advertisement

Magneto-Tunneling Between 2-Dimensional Systems

  • H. T. Grahn
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 111)

Abstract

Non-resonant and resonant Landau-level tunneling between strongly confined 2D-systems is investigated in a magnetic field. Non-resonant tunneling through a single barrier is studied in a parallel magnetic field at the boundary between electric field domains in a doped superlattice. Above 7 T a breakdown of perturbation theory appears in the magnetic field induced misaligment of the energy levels. Resonant Landau-level tunneling in a perpendicular magnetic field is observed in an undoped superlattice with optically excited carriers. Due to the strong confinement of the GaAs wells tunneling between the lowest Landau level and Landau levels with an index up to 9 in the neighboring well is detected. The selection rule of conserving the Landau level index is broken by elastic scattering or phonon assisted tunneling.

Keywords

Magnetic Field Landau Level Magnetic Field Dependence Parallel Magnetic Field Phonon Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Eaves, P.S.S. Guimaraes, B.R. Snell, F.W. Sheard, D.C. Taylor, G.A. Toombs, J.C. Portal, L. Dmowski, K.E. Singer, G. Hill, and M.A. Pate, Superlattices Microstructures 2, 49 (1986).CrossRefGoogle Scholar
  2. [2]
    P. Guéret, A. Baratoff, and E. Marclay, Europhys. Lett. 3, 367 (1987).CrossRefGoogle Scholar
  3. [3]
    T.W. Hickmott, Solid State Commun. 63, 371 (1987).CrossRefGoogle Scholar
  4. [4]
    B.R. Snell, K.S. Chan, F.W. Sheard, L. Eaves, G.A. Toombs, D.K. Maude, J.C. Portal, S.J. Bass, P. Claxton, G. Hill, and M.A. Pate, Phys. Rev. Lett. 59, 2806 (1987).CrossRefGoogle Scholar
  5. [5]
    J. Smoliner, W. Demmerle, G. Berthold, E. Gornik, G. Weimann, and W. Schlapp, Phys. Rev. Lett. 63, 2116 (1989).CrossRefGoogle Scholar
  6. [6]
    E.E. Mendez, L. Esaki, and W.I. Wang, Phys. Rev. B 33, 2893 (1986).Google Scholar
  7. [7]
    V.J. Goldman, D.C. Tsui, and J.E. Cunningham, Phys. Rev. B 36, 7635 (1987).CrossRefGoogle Scholar
  8. [8]
    G.S. Boebinger, A.F.J. Levi, S. Schmitt-Rink, A. Passner, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 65, 235 (1990).CrossRefGoogle Scholar
  9. [9]
    J.G. Chen, C.H. Yang, M.J. Yang, and R.A. Wilson, Phys. Rev. B 43, 4531 (1991).CrossRefGoogle Scholar
  10. [10]
    H.T. Grahn, R.J. Haug, W. Müller, and K. Ploog, Phys. Rev. Lett. 67, 1618 (1991).CrossRefGoogle Scholar
  11. [11]
    J.C. Maan, in Festkörperprobleme 27, edited by P. Grosse ( Vieweg, Braunschweig, 1987 ), p. 137.Google Scholar
  12. [12]
    L. Brey, G. Platero, and C. Tejedor, Phys. Rev. B 38, 9649 (1988).CrossRefGoogle Scholar
  13. [13]
    P.A. Schulz and C. Tejedor, Phys. Rev. B 39, 11187 (1989).CrossRefGoogle Scholar
  14. [14]
    C.B. Duke, in Tunneling Phenomena in Solids, edited by E. Burstein and S. Lundqvist ( Plenum Press, New York, 1969 ), p. 31.Google Scholar
  15. [15]
    H. Schneider, K. von Klitzing, and K. Ploog, Europhys. Lett. 8, 575 (1989).CrossRefGoogle Scholar
  16. [16]
    W. Müller, H.T. Grahn, and K. Ploog, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. T. Grahn
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany

Personalised recommendations