Skip to main content

Capillary Rollers and Bores

  • Conference paper
Breaking Waves

Abstract

A very intriguing phenomenon, which throws much light on the small-scale structure of the sea surface, is the occurrence of “parasitic capillaries” on the forward face of moderately short gravity waves, especially those with wavelengths 5 to 50 cm; see Figure la. These capillary waves were first studied experimentally by Cox (1958). Evidently their existence depends on the fact that a gravity wave and a much shorter capillary wave may have the same phase speed. The dynamical theory of the generation of parasitic capillaries has been developed by Longuet-Higgins (1963), Crapper (1970) and Ruvinsky et al. (1981, 1985, 1991). This so far takes into account only the first-order effects of viscous damping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banner, M.L. and Cato, D., 1988, “Physical mechanisms of noise generation by breaking waves — a laboratory study,” pp. 429–436 in Sea Surface Sound, ed. B.R. Kerman, Dordrecht, Kluwer Acad. Publ., 639 pp.

    Google Scholar 

  • Chang, J.H., Wagner, R.N. and Yuen, H.C., 1978, “Measurement of high frequency capillary waves on steep gravity waves,” J. Fluid Mech. 86, 401–413.

    Article  ADS  Google Scholar 

  • Chen, B. and Saffman, P.G., 1979, “Steady gravity-capillary waves on deep water — I. Weakly nonlinear waves,” Stud. Appl. Math. 60, 183–210.

    MathSciNet  MATH  Google Scholar 

  • Chen, B. and Saffman, P.G., 1980, “Steady gravity-capillary waves on deep water — II. Numerical results for finite amplitude,” Stud. Appl. Math. 62, 95–111.

    MathSciNet  MATH  Google Scholar 

  • Cox, C.S., 1958, “Measurements of slopes of high-frequency wind waves,” J. Mar. Res. 16, 199–225.

    Google Scholar 

  • Crapper, G.B. 1957, “An exact solution for progressive capillary waves of arbitrary amplitude,” J. Fluid Mech., 2, 532–540.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Crapper, G.D. 1970, “Non-linear capillary waves generated by steep gravity waves,” J. Fluid Mech. 40, 149–159.

    Article  ADS  Google Scholar 

  • Hogan, S.J., 1979, “Some effects of surface tension on steep water waves,” J. Fluid Mech., 91, 167–180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hogan, S.J., 1980, “Some effects of surface tension on steep water waves,” Part 2. J. Fluid Mech. 96, 417–445.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hogan, S.J., 1981, “Some effects of surface tension on steep water waves.” Part 3. J. Fluid Mech. 110, 381–410.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Koga, M., 1982, “Bubble entrainment in breaking wind waves,” Tellus 34, 481–489.

    Article  ADS  Google Scholar 

  • Lamb, H., 1932, Hydrodynamics, 6th ed., Cambridge Univ. Press, 738 pp.

    MATH  Google Scholar 

  • Longuet-Higgins, M.S., 1953, “Mass transport in water waves,” Phil. Trans. R. Soc. Lond. A 245, 535–581.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S., 1960, “Mass-transport in the boundary-layer at a free oscillating surface,” J. Fluid Mech. 8, 293–306.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S., 1963, “The generation of capillary waves by steep gravity waves,” J. Fluid Mech. 16, 138–159.

    Article  MathSciNet  ADS  Google Scholar 

  • Longuet-Higgins, M.S., 1969a, “Action of a variable stress at the surface of water waves,” Phys. Fluids 12, 737–740.

    Article  ADS  Google Scholar 

  • Longuet-Higgins, M.S., 1988, “Limiting forms for capillary-gravity waves,” J. Fluid Mech. 194, 351–375.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S., 1989, “Capillary-gravity waves of solitary type on deep water,” J. Fluid Mech. 200, 451–470.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M.S., 1990, “Flow separation near the crests of short gravity waves,” J. Phys. Oceanogr. 20, 595–599.

    Article  ADS  Google Scholar 

  • Longuet-Higgins, M.S., 1991, “Theory of weakly damped Stokes waves: a new formulation and its physical interpretation, J. Fluid Mech. (to appear).

    Google Scholar 

  • Okuda, K., Kawai, S., and Toba, Y., 1977, “Measurements of skin friction distribution along the surface of wind waves,” J. Oceanogr. Soc. Japan 33, 190–198.

    Article  Google Scholar 

  • Ruvinski, K.D. and Freidman, G.I., 1981, “The generation of capillary-gravity waves by steep gravity waves,” Izv. Atmos. Ocean Phys. 19, n: 7.

    Google Scholar 

  • Ruvinski, K.D. and Freidman, G.I., 1985, “Improvement of first Stokes method for the investigation of finite-amplitude potential gravity-capillary waves. IX All-Union Symp. on Diffraction and Propagation Wavest Theses of Reports. Tbilisi, 2, 22–25.

    Google Scholar 

  • Ruvinski, K.D., Feldstein, F.I., and Freidman, G.I., 1991, “Numerical simulation of the quasistationary stage of ripple excitation by steep gravity-capillary waves,” J. Fluid Mech. (to appear).

    Google Scholar 

  • Schooley, A.H., 1958, “Profiles of wind-created water waves in the capillary-gravity transition region,” J. Mar. Res. 16, 100–108.

    Google Scholar 

  • Toba, Y., 1961, “Drop production by bursting of air bubbles on the sea surface III. Study by use of a wind flume,” Mem. Coll. Sci: Univ. Kyoto A29, 313–343.

    Google Scholar 

  • Vanden-Broek, J.M., 1960, “Ph.D. Thesis, University of Liege.

    Google Scholar 

  • Yermakov, S.A., Ruvinski, K.D., Salashin, S.G. and Freydman, G.I., 1986, “Experimental investigation of the generation of capillary-gravity ripples by strongly nonlinear waves on the surface of a deep fluid,” Izv. Almos. Ocean. Phys. 22, 835–842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Longuet-Higgins, M.S. (1992). Capillary Rollers and Bores. In: Banner, M.L., Grimshaw, R.H.J. (eds) Breaking Waves. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84847-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84847-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84849-0

  • Online ISBN: 978-3-642-84847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics