Skip to main content

A Methodology for Formulating Large Strain Viscoplastic Constitutive Equations with Application to Simple Shear

  • Conference paper
Finite Inelastic Deformations — Theory and Applications

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

In this paper, a methodology for the formulation of large strain constitutive equations for rate dependent solids is developed. An attempt is made to obtain a consistent frame which allows the use of different unified constitutive models and which can also be used to extend models formulated for small strains to finite deformations. For a particular inelastic constitutive model, different elastic constitutive equations are compared for the case of simple shear. In addition, the simplification of the inelastic constitutive equations based on the assumption of small elastic strains is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bammann, D. J.; Aifantis, E. C.: A model for finite-deformation plasticity. Acta Mechanica 69, 97–117 (1987).

    Article  MATH  Google Scholar 

  2. Bodner, S. R.; Partom, Y.: Constitutive Equations for elastic-viscoplastic strain-hardening materials. Trans. ASME, J. Appl. Mech. 42, 385–389 (1975).

    Article  Google Scholar 

  3. Brown, S. B.; Kim, K. H.; Anand, L.: An internal variable constitutive model for hot working of metals. Int. J. Plasticity 5, 95–130 (1989).

    Article  MATH  Google Scholar 

  4. Cleja-Tigoiu, S.; Soós, E.: Elastoviscoplastic models with relaxed configurations and internal state variables. ASME, Appl. Mech. Rev. 43 (7), 131–151 (1990).

    Google Scholar 

  5. Hackenberg, H. - P.: Ein Vergleich verschiedener inelastischer Stoffgesetzformulierungen far finite Deformationen am Beispiel des ebenen Scherversuchs. Unpublished report MuMReport 91/2, Technische Hochschule Darmstadt, Darmstadt, Federal Republic of Germany 1991.

    Google Scholar 

  6. Hart, E. W.: Constitutive relations for the non-elastic deformation of metals. Trans. ASME, J. Eng. Mat. Tech. 98, 193–202 (1976).

    Google Scholar 

  7. Haupt, P.: On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic’ material behavior. Int. J. Plasticity 1, 303–316 (1988).

    Article  Google Scholar 

  8. Kollmann, F. G.; Hackenberg, H. - P.: Kinematics and rate-type elastic constitutive equations for finite rate dependent inelastic deformation of materials with small elastic strains. Unpublished report MuM-Report 90/2, Technische Hochschule Darmstadt, Darmstadt, Federal Republic of Germany 1990.

    Google Scholar 

  9. Kratochvil, J.: On a finite strain theory of elastic-plastic materials. Acta Mechanica 16, 127–142 (1973).

    Article  MATH  Google Scholar 

  10. Lee, E. H.: Elastic-plastic deformation at finite strains. Trans. ASME, J. Appl. Mech. 36, 1–6 (1969).

    Google Scholar 

  11. Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Structures 9, 725–740 (1973).

    Article  MATH  Google Scholar 

  12. Marsden, E.; Hughes, T. J. R.: Mathematical foundations of elasticity. Englewood Cliffs: Prentice Hall 1983.

    MATH  Google Scholar 

  13. Onat, E. T.: Representation of inelastic behavior in the presence of anisotropy and finite deformations. In: Plasticity of metals: Theory, computations and experiment (E. H. Lee; R. L. Mallet, eds.), pp. 519–544. Stanford, USA and Troy, USA: Stanford University and Rensslaer Polytechnical Institute 1982.

    Google Scholar 

  14. Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comp. Meths. Appl. Mech. Engrg. 66, 199–219 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  15. Simo, J. C.; Taylor, R. L.; Pister, K. S.: Variational and projection methods for the volume constraint in finite deformation elastoplasticity. Comp. Meth. Appl. Mech. Engrg. 51, 177–208 (1985).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hackenberg, HP., Kollmann, F.G. (1992). A Methodology for Formulating Large Strain Viscoplastic Constitutive Equations with Application to Simple Shear. In: Besdo, D., Stein, E. (eds) Finite Inelastic Deformations — Theory and Applications. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84833-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84833-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84835-3

  • Online ISBN: 978-3-642-84833-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics