Advertisement

Comparison of Two Constitutive Models with One- and Multiaxial Experiments

  • F. Kublik
  • E. Steck
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

The stochastic model by Steck [1,2] will be presented as well as Miller’s original model MATMOD [3,4]. Both theories are based on creep processes. The numerical techniques for the solution of the constitutive equations and the parameter identification are discussed. Finally both theories will be applied to uniaxial data of High Purity Aluminum for the determination of the material parameters.

Some experimental results are presented for multiaxial loading cases in the high temperature area. Using a photographical technique the strain field on flat surfaces can be recorded. A plate with a central hole is chosen as specimen.

Keywords

Internal Variable Isotropic Hardening Kinematic Hardening Creep Process High Purity Aluminum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steck, E.A.: A Stochastic Model for the High Temperature Plasticity of Metals. Int. Journal of Plasticity, Vol. 1, pp. 243–258, 1985.CrossRefMATHGoogle Scholar
  2. 2.
    Steck, E.A.: A Stochastic Model for the Interaction of Plasticity and Creep in Metals. Nuclear Engineering and Design, North-Holland, Amsterdam, Vol. 114, pp. 285–294, 1989.Google Scholar
  3. 3.
    Miller, A.: An Inelastic Constitutive Model for Monotonic, Cyclic and Creep Deformation: Part I–Equations Development and Analytical Procedures. Transactions of the ASME, Journal of Engineering Materials and Technology, Vol. 98, pp. 97–105, 1976.CrossRefGoogle Scholar
  4. 4.
    Miller, A.: An Inelastic Constitutive Model for Monotonic, Cyclic and Creep Deformation: Part II–Application to Type 304 Stainless Steel. Transactions of the ASME, Journal of Engineering Materials and Technology, Vol. 98, pp. 106–113, 1976.CrossRefGoogle Scholar
  5. 5.
    Chan, K.S.; Lindholm, U.S.; Bodner, S.R.: Constitutive Modelling For Isotropic Materials (HOST). Final Report, NASA CR-182132, 1988.Google Scholar
  6. 6.
    Hartmann, G.: Vergleich des einachsigen Verhaltens dreier inelastischer Werkstoffmodelle mit internen Zustandsvariablen durch numerische Experimente. Dr.-Ing. Thesis, Technical University Darmstadt 1988.Google Scholar
  7. 7.
    Ilschner, B.: Hochtemperaturplastizitaet, Springer Berlin 1973.Google Scholar
  8. 8.
    Kublik, F.: Vergleich zweier Werkstoffmodelle bei ein-und mehrachsigen Versuchsfuehrungen im Hochtemperaturbereich. Dr.-Ing. Thesis, Technical University Braunschweig (will be published in 1991 ).Google Scholar
  9. 9.
    Schettler-Koehler, R.-W.: Entwicklung eines makroskopischen Kriechgesetzes fuer Metalle aus einem stochastischen Kriechmodell. Dr.-Ing. Thesis, Technical University Braunschweig 1985.Google Scholar
  10. 10.
    Steck, E.A.; Kublik, F.: Berechnungsverfahren fuer metallische Bauteile bei Beanspruchungen im Hochtemperaturbereich. Report B1, SFB 319, Technical University Braunschweig 1990.Google Scholar
  11. 11.
    Kublik, F.: Numerische Simulation von einachsigen Kriechversuchen. Proceedings of: ‘Numerische Methoden der Plastomechanik’, Institute of Mechanics Hannover, pp. 142–156, 1989.Google Scholar
  12. 12.
    Mecking, H.: Bestimmung der Werkstoffparameter fuer das Kriechen von Aluminium-Legierungen. Final Report for the DFG research project Me 428/7, Technical University Hamburg-Harburg, January 1989.Google Scholar
  13. 13.
    Andresen, K.; Ritter, R.; Steck, E.: Theoretical and Experimental Investigations of Crack Extension by FEM- and Grating Method. Proceedings on the European Symposium on Elastic-Plastic Fracture Mechanics: Element of Defect Assessment, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • F. Kublik
    • 1
  • E. Steck
    • 1
  1. 1.Institut fuer Allgemeine Mechanik und FestigkeitslehreTechnische UniversitaetBraunschweigGermany

Personalised recommendations