Skip to main content

Mediators of Lung Injury Following Ischemia and Reperfusion

  • Chapter
Mediators of Sepsis

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 16))

Abstract

Multisystem organ failure (MOF) continues to complicate the clinical course of many patients with trauma and sepsis. It has been long appreciated that the lung is a particularly sensitive target organ following remote trauma. In 1938, VH Moon [1] described pulmonary congestion and edema in “wet autopsies” of soldiers who had died of septic shock following traumatic injuries. Lung injury and edema are now well recognized complications following ischemia and reperfusion of tissues remote from the lung, including the lower torso during abdominal aortic aneurysm repair and reperfu-sion of the ischemic intestine or liver [2–4]. In addition, lung injury may result from lung trauma itself following such insults as pulmonary artery occlusion, acid aspiration, pneumothorax, atelectasis and contusion [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moon VH (1938) Inflammation. In: Shock and related capillary phenomena (Chapt V), Oxford University Press, New York, pp 64–81

    Google Scholar 

  2. Paterson IS, Klausner JM, Goldman G, et al. (1989) Pulmonary edema after aneurysm surgery is modified by mannitol. Ann Surg 210:796–801

    PubMed  CAS  Google Scholar 

  3. Caty MG, Guice KS, Oldham KT, Remick DG, Kunkel SI (1990) Evidence for tumor necrosis factor-induced pulmonary microvascular injury after intestinal ischemia reperfusion injury. Ann Surg 212:694–700

    Article  PubMed  CAS  Google Scholar 

  4. Colletti LM, Remick DG, Burtch GD, Kunkel SL, Streiter RM, Campbell DA (1990) Role of tumour necrosis factor alpha in the pathophysiologic alterations after hepatic ischemia/reper-fusion injury in the rat. J Clin Invest 85:1936–1943

    Article  PubMed  CAS  Google Scholar 

  5. Horgan MJ, Wright SD, Malik AB (1990) Antibody against leukocyte integrin (CD 18) prevents reperfusion-induced lung vascular injury. Am J Physiol 259:315–319

    Google Scholar 

  6. Goldman G, Welbourn R, Lindsay T, Hill J, Shepro D, Hechtman HB (1991) Neutrophil adhesion receptors mediate remote aspiration injury. FASEB J A:6503

    Google Scholar 

  7. Moore FD (1959) In: Metabolic care of the surgical patient, WB Saunders Co, Philadelphia, PA, pp 97.

    Google Scholar 

  8. Klass AA (1953) Acute mesenteric arterial occlusion: Restoration of blood flow by embolec-tomy. J Int Coll Surg 20:687–694

    PubMed  CAS  Google Scholar 

  9. Klausner JM, Paterson IS, Goldman G, Valeri CR, Shepro D, Hechtman HB (1989) Throm-boxane A2 mediates increased pulmonary microvascular permeability following limb ischemia. Circ Res 64:1178–1189.

    PubMed  CAS  Google Scholar 

  10. Hocking DC, Phillips PG, Ferro TJ, Johnson A (1990) Mechanisms of pulmonary edema induced by tumor necrosis factor-α. Circ Res 67:68–76

    PubMed  CAS  Google Scholar 

  11. Klausner JM, Paterson IS, Valeri CR, Shepro D, Hechtman HB (1988) Limb ischemia-induced increase in permeability is mediated by leukocytes and leukotrienes. Ann Surg 208:755–760

    Article  PubMed  CAS  Google Scholar 

  12. Wakabayashi G, Gelfand JA, Burke JF, Thompson RC, Dinarello CA (1991) A specific receptor antagonist for interleukin 1 prevents Escherichia coli-induced shock in rabbits. FASEB J 5:338–343

    PubMed  CAS  Google Scholar 

  13. Michie HR, Manogue KR, Spriggs DR, et al.(1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Eng J Med 318:1481–1486

    Article  CAS  Google Scholar 

  14. Dubravec DB, Spriggs DR, Mannick JA, Rodrick ML (1990) Circulating human peripheral blood granulocytes synthesize and secrete tumor necrosis factor a. Proc Natl Acad Sci USA 87:6758–6761

    Article  PubMed  CAS  Google Scholar 

  15. Dinarello CA (1991) Interleukin-1 and Interleukin-1 antagonism. Blood 77:1627–1652

    PubMed  CAS  Google Scholar 

  16. Kurt-Jones EA, Beller DI, Mizel SB (1985) Identification of a membrane-αssociated interleukin-1 in macrophages. Proc Natl Acad Sci USA 82:1204–1208

    Article  PubMed  CAS  Google Scholar 

  17. Nathan C, Srimal S, Farber C, et al(1989) Cytokine-induced respiratory burst of human neu-trophils: Dependence on extracellular matrix proteins and CD18/CD18 integrins. J cell Biol 109:1341–1349

    Article  PubMed  CAS  Google Scholar 

  18. Gamble JR, Harlan JM, Klebanoff SJ, Vadas MA (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82:8667–8671

    Article  PubMed  CAS  Google Scholar 

  19. Smith CW, Kishimoto TK, Abassi O, et al. (1991) Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothe-lial cells in vitro. J Clin Invest 87:609–618

    Article  PubMed  CAS  Google Scholar 

  20. Movat HZ, Burrowes CE, Cybulsky MI, Dinarello CA (1987) Acute inflammation and a Schwartzman-like reaction induced by interleukin-1 and tumor necrosis factor. Synergistic action of the cytokines in the induction of inflammation and microvascular injury. Am J Pa-thol 129:463–476

    CAS  Google Scholar 

  21. Abe Y, Sekiya S, Yamashita T, Sendo F (1990) Vascular hyperpermeability induced by tumor necrosis factor and its augmentation by IL-1 and IFN-γ is inhibited by selective depletion of neutrophils with a monoclonal antibody. J Immunol 145:2902–2907

    PubMed  CAS  Google Scholar 

  22. Ulich TR, Yin S, del Castillo J, Eisenberg SP, Thompson RC (1991) The intratracheal administration of endotoxin and cytokines. The interleukin-1 receptor antagonist inhibits endoto-xin-and IL-1-induced acute inflammation. Am J Pathol 138:521–524

    PubMed  CAS  Google Scholar 

  23. Goldblum SE, Jay M, Yoneda K, Cohen DA, McClain CJ, Gillespie MN (1987) Monokine-induced acute lung injury in rabbits. J Appl Physiol 63:2093–2100

    PubMed  CAS  Google Scholar 

  24. Welbourn R, Goldman G, Riordan MO (1991) Role for tumor necrosis is factor as a mediator of lung injury following lower torso ischemia. Am J Physiol 70:2645–2650

    CAS  Google Scholar 

  25. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA (1988) Interleukin-1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cy-clooxygenase inhibition. J Clin Invest 81:1162–1172

    Article  PubMed  CAS  Google Scholar 

  26. Waage A, Espevik T (1988) Interleukin 1 potentiates the lethal effects of tumor necrosis fac-tor-α/cachectin in mice. J Exp Med 167:1987–1992

    Article  PubMed  CAS  Google Scholar 

  27. Beutler B, Milsark IW, Cerami AC, et al. (1985) Passive immunization against cachectin/tu-mor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871

    Article  PubMed  CAS  Google Scholar 

  28. Tracey KJ, Fong Y, Hesse DG, et al (1987) Anti-cachetin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330:662–664

    Article  PubMed  CAS  Google Scholar 

  29. Ohlsson K, Björk P, Bergenfeldt M, Hageman R, Thompson RC (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348:550–552

    Article  PubMed  CAS  Google Scholar 

  30. Carter DB, MR Deibel, CJ Dunn, et al. (1990) Purification, cloning, expression and biological characterization of an interleukin-1 receptor antagonist protein. Nature 344:633–638

    Article  PubMed  CAS  Google Scholar 

  31. Mclntyre KW, Stepan GJ, Kolinsky KD, et al. (1991) Inhibition of interleukin-1 binding and bioactivity in vitro, and modulation of acute inflammation in vivo by IL-1 receptor antagonist and anti-IL-1 receptor monoclonal antibody. J Exp Med 173:931–939

    Article  Google Scholar 

  32. Karolle BL, Weiss SJ, Huber AR, Lim MJ, Buda AJ (1991) The recombinant receptor antagonist to interleukin-1 reduces myocardial neutrophil accumulation and tissue injury following ischemia and reperfusion. Circulation 84:A336

    Google Scholar 

  33. Stewart AG, Dubbin PN, Harris T, Dusting GJ (1990) Platelet-activating factor may act as a second messenger in the release of ecosanoids and Superoxide anions from leukocytes and endothelial cells. Proc Natl Acad Sci USA 87:3215–3219

    Article  PubMed  CAS  Google Scholar 

  34. Kuijpers VW, Hakkert BC, Hoogerwerf M, Leeuwenberg JF, Roos D (1991) Role of endothelial leukocyte adhesion molecule-1 and platelet activating factor in neutrophil adherence to IL-1-prestimulated endothelial cells. Endothelial leukocyte adhesion molecule-1 mediated CD18 activation. J Immunol 147:1369–1376

    PubMed  CAS  Google Scholar 

  35. Anderson BO, Poggetti RS, Shanley PF, et al. (1991) Primed neutrophils injure rat lung through a platelet-activating factor-dependent mechanism. J Surg Res 50:510–514

    Article  PubMed  CAS  Google Scholar 

  36. Mozes T, Braquet P, Filep J (1989) Platelet-activating factor: An endogenous mediator of mesenteric ischemia-reperfusion-induced shock. Am J Physiol 257:872–877

    Google Scholar 

  37. Marks RM, Todd RF III, Ward PA (1989) Rapid induction of neutrophil-endothelial adhesion by endothelial complement fixation. Nature 339:314–317

    Article  PubMed  CAS  Google Scholar 

  38. Crawford MH, Grover FL, Kolb WP, et al. (1988) Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury. Circulation 78:1449–1458

    Article  PubMed  CAS  Google Scholar 

  39. Moore FD Jr, Warner KG, Assousa S, Valeri CR, Khuri SF (1988) The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin and hemodilution. Ann Surg 208:95–103

    Article  PubMed  Google Scholar 

  40. Hammerschmidt DE, Weaver LJ, Hudson LD, Craddock PR, Jacob HS (1980) Association of complement activation and elevated plasma C5a with adult respiratory distress syndrome: Pathophysiologic relevance and possible prognostic value. Lancet 1:947–949

    Article  PubMed  CAS  Google Scholar 

  41. Weinberg P, Matthay M, Webster R, Roskos K, Goldstein I, Murray J (1984) Biologically active products of complement and acute lung injury in patients with the sepsis syndrome. Am Rev Resp Dis 130:791–796

    PubMed  CAS  Google Scholar 

  42. Duchateau J, Haas M, Schreyen H, Radoux L, Sprangers I, Noel F (1984) Complement activation in patients at risk of developing the adult respiratory distress syndrome. Am Rev Resp Dis 130:1058–1064

    PubMed  CAS  Google Scholar 

  43. Weisman HF, Bartow T, Leppo MK et al. (1991) Soluble human complement receptor type 1: In vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249:146–151

    Article  Google Scholar 

  44. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376

    Article  PubMed  CAS  Google Scholar 

  45. Klausner JM, Paterson IS, Kobzik L, Valeri CR, Shepro D, Hechtman HB (1989) Oxygen free radicals mediate ischemia-induced lung injury. Surgery 104:192–199

    Google Scholar 

  46. Petrone WF, English DK, Wong K, McCord JM (1980) Free radicals and inflammation su-peroxide-dependent activation of neutrophil chemotactic factor in plasma. Proc Natl Acad Sci USA 77:1159–1163

    Article  PubMed  CAS  Google Scholar 

  47. Wems S, Brinker J, Gruber J, et al.(1989) A randomized, double-blind trial of recombinant human Superoxide dismutase (SOD) in patients undergoing PTCA for acute MI. Circulation 80(Suppl):113

    Google Scholar 

  48. Schneeberger H, Illner WD, Abendroth D, et al. (1989) First clinical experiences with super-oxide dismutase in kidney transplantation: Results of a double blind randomized study. Transplantation Proceedings 21:1245–1246

    PubMed  CAS  Google Scholar 

  49. Harlan JM (1985) Leukocyte-Endothelial interactions. Blood 65:513–525

    PubMed  CAS  Google Scholar 

  50. Wedmore CV, Williams TJ (1981) Control of vascular permeability by polymorphnuclear leukocytes in inflammation. Nature 289:646–650

    Article  PubMed  CAS  Google Scholar 

  51. Welbourn CRB, Goldman G, Paterson IS, Valeri CR, Shepro D, Hechtman HB (1991) Neutrophil elastase and oxygen radicals: Synergism in lung injury after hindlimb ischemia. Am J Physiol 260:1852–1856

    Google Scholar 

  52. Jaeschke H, Farhood A, Wayne-Smith C (1990) Neutrophils contribute to ischemia/reperfu-sion injury in rat liver in vivo. FASEB J 4:3355–3359

    PubMed  CAS  Google Scholar 

  53. Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN (1987) Role of neutrophils in ischemia/reperfusion-induced microvascular injury. Am J Physiol 253:699–703

    Google Scholar 

  54. Schmeling DJ, Caty MG, Oldham KT, Guice KS, Hinshaw DB (1989) Evidence for a neutrophil related acute lung injury following intestinal ischemia-reperfusion injury. Surgery 106:195–203

    PubMed  CAS  Google Scholar 

  55. Lo SK, Van Seventer GA, Levin SM, Wright SD (1989) Two leukocyte receptors (CD11a/CD18 and CD11b/CD18) mediate transient adhesion to endothelium by binding to different ligands. J Immunol 143:3325–3329

    PubMed  CAS  Google Scholar 

  56. Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DA (1989) Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 83:2008–2017

    Article  PubMed  CAS  Google Scholar 

  57. Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Wayne Smith C (1990) Mac-1 (CD11b/CD18) mediates adherence-dependence hydrogen peroxide production by human and canine neutrophils. J Immunol 144:2702–2711

    PubMed  CAS  Google Scholar 

  58. Luscinskas FW, Brock AF, Arnaout MA, Gimbrone NM (1989) Endothelial-leukocyte adhesion molecule-1-dependent and leukocyte (CD11/CD18)-independent mechanisms contribute to polymorphonuclear leukocyte adhesion to cytokine-activated human vascular endotheli,-um. J Immunol 142:2257–2263

    PubMed  CAS  Google Scholar 

  59. Schleiffenbaum B, Moser R, Patarroyo M, Fehr J (1989) Me cell surface glycoprotein Mac-1 (CD11b/CD18) mediates neutrophil adhesion and modulates degranulation independently of its cell surface expression. J Immunol 142:3527–3545

    Google Scholar 

  60. Lopez AF, Williamson DJ, Gamble JR, et al. (1986) A recombinant human granulocyte-ma-crophage colony-stimulation factor (rhGM-CSF) stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression and survival. J Clin Invest 78:1220–1228

    Article  PubMed  CAS  Google Scholar 

  61. Welbourn R, Goldman G, Kobzik L, Valeri CR, Shepro D, Hechtman HB (1990) Neutrophil adherence receptors (CD18) in ischemia: Dissociation between quantitative cell surface expression and diapedesis mediated by leukotriene B4. J Immunol 145:1906–1911

    PubMed  CAS  Google Scholar 

  62. Lawrence MB, Smith CW, Eskin SG, Mclntire LV (1990) Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood 75:227–237

    PubMed  CAS  Google Scholar 

  63. Vedder NB, Winn RK, Rice CL, Chi EY, Arfors KE, Harlan JM (1988) A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from haemorrhagic shock and resuscitation in rabbits. J Clin Invest 81:939–944

    Article  PubMed  CAS  Google Scholar 

  64. Welboum R, Goldman G, Valeri CR, Shepro D, Hechtman HB (1992) Lung injury following hindlimb ischemia is mediated by neutrophil CD18 adherence receptors. Circ Res (In press)

    Google Scholar 

  65. Walsh CJ, Carey PD, Cook DJ, Bechard DE, Fowler AA, Sugarman HJ (1991) Anti CD18 antibody attenuates neutropenia and alveolar capillary-membrane injury during gram-negative sepsis. Surgery 110:205–212

    PubMed  CAS  Google Scholar 

  66. Doerschuk CM, Winn RK, Coxson HO, Harlan JM (1990) CD 18-dependent and independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J Immunol 144:2327–2333

    PubMed  CAS  Google Scholar 

  67. Mileski W, Winn R, Harlan J, Rice C (1989) Inhibition of neutrophil adhesion in sepsis. Surg Forum 40:107–108

    Google Scholar 

  68. Pober JS, Gimbrone MA, Lapierre LA, et al. (1986) Overlapping patterns of activation of human endothelial cells by interleukin-1, tumor necrosis factor, and immune interferon. J Immunol 137:1893–1896

    PubMed  CAS  Google Scholar 

  69. Smith CW, Rothlein R, Hughes B, Mariscalco M, Schmalsteig F, Anderson DC (1988) Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J Clin Invest 82:1746–1756

    Article  PubMed  CAS  Google Scholar 

  70. Horgan MJ, Ge M, Gu J, Rothlein R, Malik AB (1991) Protective effect of monoclonal antibody RR1 directed against intercellular adhesion molecule ICAM-1 in reperfusion lung injury. Am Rev Resp Dis 143:A578

    Google Scholar 

  71. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA Jr (1985) Interleukin-1 acts on cultured human vascular endothelial cells to increase the adhesion of polymorphonuclear leukocytes, monocytes and related leukocyte cell lines. J Clin Invest 76:2003–2011

    Article  PubMed  CAS  Google Scholar 

  72. Munro JM, Pober JS, Cotran RS (1989) Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. Am J Path 135:121–133

    PubMed  CAS  Google Scholar 

  73. Philips ML, Nudelman E, Gaeta FC, et al. (1991) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-lex. Science 250:1130–1135

    Article  Google Scholar 

  74. Picker LJ, Wamock RA, Bums AR, Doerschuk CM, Berg EL, Butcher EC (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66:921–933

    Article  PubMed  CAS  Google Scholar 

  75. Mulligan MS, Varani J, Dame MK, et al. (1991) Role of endothelial-leukocyte adhesion molecule 1 (ELAM-1) in neutrophil-mediated lung injury in rats. J Clin Invest 88:1396–1406

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hill, J., Lindsay, T.F., Hechtman, H.B. (1992). Mediators of Lung Injury Following Ischemia and Reperfusion. In: Lamy, M., Thijs, L.G. (eds) Mediators of Sepsis. Update in Intensive Care and Emergency Medicine, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84827-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84827-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84829-2

  • Online ISBN: 978-3-642-84827-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics