Skip to main content

Cardiac Effects of the Mediators of Sepsis

  • Chapter
Book cover Mediators of Sepsis

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 16))

Abstract

Like other forms of acute circulatory failure, septic shock is characterized by an imbalance between oxygen demand and oxygen supply. As a result, tissue hypoxia occurs, as reflected by the development of anaerobic metabolism and elevated blood lactate levels. Many clinical studies have indicated that in contrast to physiological conditions, oxygen uptake (VO2) can remain dependent on oxygen delivery (DO2) in patients with septic shock, even though cardiac output and DO2 are generally normal or elevated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakker J, Vincent JL (1991) The oxygen supply dependency phenomenon is associated with increased blood lactate levels. J Crit Care 6:152–159

    Article  Google Scholar 

  2. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL (1991) Blood lactate levels are superior to oxygen derived variables in predicting outcome in human septic shock. Chest 99:956–962

    Article  PubMed  CAS  Google Scholar 

  3. Vincent JL (1991) Diagnostic and medical management/supportive care of patients with gram-negative bacteremia and septic shock. Infect Dis Clin North Am 5:807–816

    PubMed  CAS  Google Scholar 

  4. Damas P, Reuter A, Gysen P, Demonty J, Lamy M, Franchimont P (1989) Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 17:975–979

    Article  PubMed  CAS  Google Scholar 

  5. Calandra T, Baumgartner JD, Grau DG, et al. (1990) Prognostic values of tumor necrosis fac-tor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. J Infect Dis 161:982–987

    Article  PubMed  CAS  Google Scholar 

  6. Pinsky MR, Vincent JL, Kahn RJ, Schandene L, Dupont E, Content J (1990) Inflammatory mediators of septic shock in man. Am Rev Respir Dis 141 (Abs):A512

    Google Scholar 

  7. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee T (1988) Prospective trial of supranor-mal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  PubMed  CAS  Google Scholar 

  8. Vincent JL (1991) Advances in the concepts of intensive care. Am Heart J 121:1859–1865

    Article  PubMed  CAS  Google Scholar 

  9. Ghezzi P, Dinarello CA, Bianchi M (1991) Hypoxia increases IL-1 and TNF production by human mononuclear cells. Cytokine 3:189–194

    Article  PubMed  CAS  Google Scholar 

  10. Stellin G, Waxman K, Yamamoto R, Granger G (1991) Hypoxia stimulates release of tumor necrosis factor from human macrophages. Crit Care Med 4:S57

    Google Scholar 

  11. Jensen JG, Buresh C, Norton JA (1990) Lactic acidosis increases tumor necrosis factor secretion and transcription in vitro. J Surg Res 49:350–353

    Article  PubMed  CAS  Google Scholar 

  12. Spengler RN, Allen RM, Remick DG, Strieter RM, Kunkel SL (1990) Stimulation of alpha-adrenergic receptor augments the production of macrophage-drived tumor necrosis factor. J Immunol 145:1430–1434

    PubMed  CAS  Google Scholar 

  13. Colletti LM, Remick DG, Burtch GD, Kunkel SL, Strieter RM, Campbell DA Jr (1990) Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/re-perfusion injury in the rat. J Clin Invest 85:1936–1943

    Article  PubMed  CAS  Google Scholar 

  14. Walman A, Parker S, Traystman R, Furtner G (1984) Isoproterenol protects against pulmonary edema in endotoxin lung injury. Anesthesiology 61:3–8

    Article  Google Scholar 

  15. Demling RH, Knox J, Youn YK, Daryani R, LaLonde C (1992) Effect of dobutamine infusion on endotoxin-induced lipid peroxidation in awake sheep. Surgery 111:79–85

    PubMed  CAS  Google Scholar 

  16. Darling G, Goldstein DS, Stull R, Gorschboth CM, Norton JA (1989) Tumor necrosis factor.: Immune endocrine interaction. Surgery 106:1155–1160

    PubMed  CAS  Google Scholar 

  17. Tracey KJ, Lowry SF, Fahey TS, et al. (1987) Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet 164:415–421

    PubMed  CAS  Google Scholar 

  18. Starnes HF, Warren RS, Jeevanandam M, et al. (1988) Tumor necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 82:1321–1325

    Article  PubMed  CAS  Google Scholar 

  19. Cerra FB (1989) Hypermetabolism, organ failure, and metabolic support. Surgery 191:1–6

    Google Scholar 

  20. Flores EA, Bistrian BR, Pomposelli JJ, Dinarello CA, Blackburn GL, Istfan NW (1989) Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. J Clin Invest 83:1614–1622

    Article  PubMed  CAS  Google Scholar 

  21. Michie HR, Spriggs DR, Manogue KR, et al. (1988) Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104:280–286

    PubMed  CAS  Google Scholar 

  22. Levine B, Kaiman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323:236–241

    Article  PubMed  CAS  Google Scholar 

  23. Goodman MN (1991) Tumor necrosis factor induces skeletal muscle protein breakdown in rats. Am J Physiol 260:727–730

    Google Scholar 

  24. Baracos V, Rodemann P, Dinarello CA, et al. (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-1). A mechanism for the increased degradation of muscle proteins during fever. N Engl J Med 308:553–558

    Article  PubMed  CAS  Google Scholar 

  25. Vicaut E, Hou X, Payen D, Bousseau A, Tedgui A (1991) Acute effects of tumor necrosis factor on the microcirculation in rat cremaster muscle. J Clin Invest 87:1537–1540

    Article  PubMed  CAS  Google Scholar 

  26. Hollenberg SM, Cunnion RE, Parrillo JE (1991) The effect of tumor necrosis factor on vascular smooth muscle. Chest 100:1133–1137

    Article  PubMed  CAS  Google Scholar 

  27. McKenna T (1990) Prolonged exposure of rat aorta to low levels of endotoxin in vitro results in impaired contractility. J Clin Invest 86:160–168

    Article  PubMed  CAS  Google Scholar 

  28. Kilbourn RG, Gross SS, Jubran A, et al. (1990) NG-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: Implications for the involvement of nitric oxide. Proc Natl Acad Sci USA 87:3629–3632

    Article  PubMed  CAS  Google Scholar 

  29. Groeneveld AB, Bronsveld W, Thijs LG 81986) Hemodynamic determinants of mortality in human septic shock. Surgery 99:140–152

    Google Scholar 

  30. Parker MM, Suffredini AF, Natanson C, Ognibene FP, Shelhamer JH, Parrillo JE (1989) Responses of left ventricular function in survivors and nonsurvivors of septic shock. J Crit Care 4:19–25

    Article  Google Scholar 

  31. Vincent JL, Gris P, Coffernils M, et al. (1992) Myocardial depression and decreased vascular tone characterize fatal course from septic shock. Surgery (in press).

    Google Scholar 

  32. Stephens KE, Ishizaka A, Larrick JW, Raffln TA (1988) Tumor necrosis factor causes increased pulmonary permeability and edema. Am Rev Respir Dis 137:1364–1370

    PubMed  CAS  Google Scholar 

  33. Abel FL (1989) Myocardial function in sepsis and endotoxin shock. Am J Physiol 257:R1265–R1281

    PubMed  CAS  Google Scholar 

  34. Suffredini AF, Fromm RE, Parker MM, et al. (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321:280–287

    Article  PubMed  CAS  Google Scholar 

  35. Natanson C, Eichenholz PW, Danner RL, et al. (1989) Endotoxin and tumor necrosis factor challenges in dogs stimulate the cardiovascular profile of human septic shock. J Exp Med 169:823–832

    Article  PubMed  CAS  Google Scholar 

  36. Pagani FD, Baker LS, Knox MA, et al. (1991) Tumor necrosis factor alpha causes diastolic creep and reversible left ventricular systolic dysfunction in conscious dogs. Surg Forum 41:40–43

    Google Scholar 

  37. Horibe M, Tezuka S, Okada K (1991) Changes in Emax after administration of tumor necrosis factor. Circ Shock (Abs) 34:22

    Google Scholar 

  38. Schirmer JM, Fry DE (1989) Recombinant human tumor necrosis factor produces hemodynamic changes characteristic of sepsis and endotoxemia. Arch Surg 124:445–448

    Article  PubMed  CAS  Google Scholar 

  39. Hollemberg SM, Cunnion RE, Lawrence M, Kelly JL, Parrillo JE (1989) Tumor necrosis factor depress myocardial cell function: Results using an in vitro assay of myocyte performance. Clin Res 37:528–534

    Google Scholar 

  40. Heard SO, Perkins MW, Fink MP (1992) Tumor necrosis factor-alpha causes myocardial depression in guinea pigs. Crit Care Med 20:523–527

    Article  PubMed  CAS  Google Scholar 

  41. Hegewisch S, Weh JH, Hossfeld DK (1990) TNF-induced cardiomyopathy. Lancet (Letter) 1:294–295

    Article  Google Scholar 

  42. Bakker J (1992) Serial blood lactate levels can predict multiple organ failure in septic shock patients. Crit Care Med (Abs) (in press)

    Google Scholar 

  43. Roubin R, Elsas PP, Fiers W, Dessein AJ (1987) Recombinant human tumor necrosis factor (rTNF) endhances leukotriene biosynthesis in neutrophils and eosinophils stimulated with the Ca2 + ionophore A23187. Clin Exp Immunol 70:484–490

    PubMed  CAS  Google Scholar 

  44. Ognibene FP, Parker MM, Natanson C, Shelhamer JH, Parrillo JE (1988) Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock. Chest 93:903–910

    Article  PubMed  CAS  Google Scholar 

  45. Deyton LR, Walker RE, Konvacs JA, et al. (1989) Reversible cardiac dysfunction associated with interferon alpha therapy in AIDS patients with Kaposi’s sarcoma. N Engl J Med 321:1246–1249

    Article  PubMed  CAS  Google Scholar 

  46. Sonnenblick M, Rosin A (1991) Cardiotoxicity of interferon. Chest 99:557–561

    Article  PubMed  CAS  Google Scholar 

  47. Preiser JC, Schmartz D, Van der Linden P, et al. (1991) IL-6 administration has no acute he-modynamic effect in the dog. Cytokine 3:1–4

    Article  PubMed  CAS  Google Scholar 

  48. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    Article  PubMed  CAS  Google Scholar 

  49. Dhainaut JF, Huyghebaert MF, Monsallier JF, et al. (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541

    Article  PubMed  CAS  Google Scholar 

  50. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF (1989) Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 86:6753–6757

    Article  PubMed  CAS  Google Scholar 

  51. Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG (1990) Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes — Impairment of signal transduction. Circ Res 67:753–763

    PubMed  CAS  Google Scholar 

  52. Notterman D, Steinberg C, Metakis L, Singh M (1991) Tumor necrosis factor (TNF) produces homologous desensitization of the beta-adrenergic receptor complex. Crit Care Med 19:S74

    Google Scholar 

  53. Reithmann C, Gierschik P, Werdan K, Jakobs KH (1991) Tumor necrosis factor alpha up-re-gulates Gi alpha and G beta proteins and adenylate cyclase responsiveness in rat cardiomyo-cytes. Eur J Pharmacol 206:53–60

    Article  PubMed  CAS  Google Scholar 

  54. Mak IT, Kramer JH, Freedman AM, Tse SYH, Weglicki WB (1990) Oxygen radical-mediated injury of myocytes — Protection by propranolol. J Mol Cell Cardiol 22:687–695

    Article  PubMed  CAS  Google Scholar 

  55. Massey KD, Burton K (1990) Free radical damage in neonatal rat cardiac myocyte cultures: Effects of alpha-tocopherol, trolox, and phytol. Free Radical Biol Med 8:449–458

    Article  CAS  Google Scholar 

  56. Wagenknecht B, Hug M, Freudenrich C, et al. (1990) Cardiodepressive and cardiotoxic effects of oxygen free radicals in cultured heart muscle cells. J Mol Cell Cardiol 22:S51

    Article  Google Scholar 

  57. Simpson PJ, Todd RF, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR (1988) Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-MOl, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 81:624–629

    Article  PubMed  CAS  Google Scholar 

  58. Woodley SL, McMillan M, Shelby J, et al. (1991) Myocyte injury and contraction abnormalities produced by cytoxic T lymphocytes. Circulation 83:1410–1418

    PubMed  CAS  Google Scholar 

  59. Fujioka K, Sugi K, Isago T, et al. (1991) Thromboxane synthase inhibition and cardiopulmo-nary function during endotoxemia in sheep. J Appl Physiol 71: 1376–1381

    PubMed  CAS  Google Scholar 

  60. Kulatilake N, Gonzalez-Lavin L, Grover GJ (1991) Thromboxane A2 receptor blockade improves contractile function following cardiopulmonary bypass in dogs and pigs. J Surg Res 51:336–340

    Article  PubMed  CAS  Google Scholar 

  61. Etemadi AR, Tempel GE, Farah BA, Wise WC, Halushka PV, Cook JA (1987) Beneficial effects of a leukotriene antagonist on endotoxin-induced acute hemodynamic alterations. Circ Shock 22:55–63

    PubMed  CAS  Google Scholar 

  62. Soulsby ME, Jacobs ER, Perlmutter BH, Bone RG (1984) Protection of myocardial function during endotoxin shock by ibuprofen. Prostaglandins Leukotrienes Med 13:295–305

    Article  CAS  Google Scholar 

  63. Chang SW, Feddersen CO, Henson PM, Voelkel NF (1987) Platelet-activating factor mediates hemodynamic changes and lung injury in endotoxin-treated rats. J Clin Invest 79:1498–1509

    Article  PubMed  CAS  Google Scholar 

  64. Doebber TW, Wu MS, Robbins JC, Choy BM, Chang MN, Shen TY (1985) Platelet-activa ting factor (PAF) involvement in endotoxin-induced hypotension in rats. Studies with PAF-receptor antagonist kadsurenone. Biochem Biophys Res Commun 127:799–808

    Article  PubMed  CAS  Google Scholar 

  65. Moore JM, Earnest MA, DiSimone AG, Abumrad NN, Fletcher JR (1991) A PAF receptor antagonist, BN 52021 attenuates thromboxane release and improves survival in lethal canine endotoxemia. Circ Shock 35:53–59

    PubMed  CAS  Google Scholar 

  66. Kaneko M, Chapman DC, Ganguly PK, Beamish RE, Dhalla NS (1991) Modification of cardiac adrenergic receptors by oxygen free radicals. Am J Physiol 260:821–826

    Google Scholar 

  67. Pretto EO (1991) Cardiac function after hepatic ischemia-anoxia and reperfusion injury: A new experimental model. Crit Care Med 19:1188–1193

    Article  PubMed  CAS  Google Scholar 

  68. Cohn SM, Fink MP, Lee PC, et al. (1990) LY 171883 preserves mesenteric perfusion in porcine endotoxin shock. J Surg Res 49:37

    Article  PubMed  CAS  Google Scholar 

  69. Qi M, Jones SB (1990) Contribution of platelet activating factor to hemodynamic and sympathetic responses to bacterial endotoxin in conscious rats. Circ Shock 32:153–163

    PubMed  CAS  Google Scholar 

  70. Deitch EA, Ma L, MA JW, et al. (1989) Inhibition of endotoxin-induced bacterial translocation in mice. J Clin Invest 84:36–41

    Article  PubMed  CAS  Google Scholar 

  71. Snapper JR, Hutchinson AA, Ogletree ML, Brigham KL (1983) Effects of cyclooxygenase inhibitors on the alterations in lung mechanics caused by endotoxemia in the unanesthetized sheep. J Clin Invest 72:63–76

    Article  PubMed  CAS  Google Scholar 

  72. Horvath CJ, Kaplan JE, Asrar BM (1991) Role of platelet-activating factor in mediating tumor necrosis factor alpha-induced pulmonary vasoconstriction and plasma-lymph protein transport. Am Rev Respir Dis 144:1337–1341

    PubMed  CAS  Google Scholar 

  73. Mayers I, Johnson D, Hurst T, To T (1991) Interactions of tumor necrosis factor and granulo-cytes with pulmonary vascular resistance. J Appl Physiol 71:2338–2345

    PubMed  CAS  Google Scholar 

  74. Vincent JL, Weil MH, Puri V, Carlson RW (1981) Circulatory shock associated with purulent peritonitis. Am J Surg 142:262–270

    Article  PubMed  CAS  Google Scholar 

  75. McDonough KW, Brumfield BA, Lang CH (1986) In vitro myocardial performance after lethal and nonlethal doses of endotoxin. Am J Physiol 250:H240–H246

    PubMed  CAS  Google Scholar 

  76. D’Orio V, Mendes P, Saad G, Marcelle R (1990) Accuracy in early prediction of prognosis of patients with septic shock by analysis of simple indices: Prospective study. Crit Care Med 18:1339–1345

    Article  PubMed  Google Scholar 

  77. Vincent JL, Frank RN, Contempre B, Kahn RJ (1989) Right ventricular dysfunction in septic shock: Assesment by measurements of right ventricular ejection fraction using the thermodilution technique. Acta Anaesthesiol Scand 33:34–38

    Article  PubMed  CAS  Google Scholar 

  78. Tracey KJ, Wei H, Manogue KR, et al. (1988) Cachectin/tumor necrosis factor induces ca-chexia, anemia and inflammation. J Exp Med 167:1211–1214

    Article  PubMed  CAS  Google Scholar 

  79. Exley AR, Cohen J, Buurman WA, et al. (1900) Monoclonal antibody to TNF in severesep-tic shock. Lancet (Letter) 2:1275–1277

    Google Scholar 

  80. Vincent JL, Bakker J, Marécaux G, Schandene L, Kahn RJ, Dupont E (1992) Anti-TNF antibodies administration increases myocardial contractility in septic shock patients. Chest 101:810–815

    Article  PubMed  CAS  Google Scholar 

  81. Fisher CJ (1992). J Clin Invest (in press)

    Google Scholar 

  82. Barzilay E, Kessler D, Lesmes C, et al. (1988) Sequential plasmafilter dialysis with slow continuous hemofiltration: Additional treatment for sepsis induced AOSF treatment. J Crit Care 3:163–166

    Article  Google Scholar 

  83. Lefer AM (1970) Role of a myocardial depressant factor in the pathogenesis of circulatory shock. Fed Proc 29:1836–1847

    PubMed  CAS  Google Scholar 

  84. Carli A, Auclair MC, Vernimmen C, Jourdon P (1979) Reversal of calcium of rat heart cell dysfunction induced by human sera in septic shock. Circ Shock 6:147–151

    PubMed  CAS  Google Scholar 

  85. Parrillo JE, Burch C, Shelhamer JH (1985) A circulating myocardial depressant substance in humans with septic shock. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  86. Hallström S, Koidl B, Müller U, Werdan K, Schlag G (1991) A cardiodepressant factor isolated from blood blocks Ca2+ current in cardiomyocytes. Heart Circ Pnysiol 29:869–876

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vincent, J.L., Berlot, G. (1992). Cardiac Effects of the Mediators of Sepsis. In: Lamy, M., Thijs, L.G. (eds) Mediators of Sepsis. Update in Intensive Care and Emergency Medicine, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84827-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84827-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84829-2

  • Online ISBN: 978-3-642-84827-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics