Liquid Crystal Thermography and Image Processing in Heat and Fluid Flow Experiments

  • J. Stasiek
  • M. W. Collins


This paper describes new methods which can determine quantitatively two-dimensional temperature distributions on a surface and in a fluid from colour records obtained using a thermosensitive liquid crystal material combined with image processing. Application-type experiments have been carried out both to visualise the complex temperature distribution over a cooled surface disturbed by different solid obstacles, and also to investigate temperature and flow patterns in a rectangular cavity for natural convection.


Heat Transfer Liquid Crystal Cholesteric Liquid Crystal Local Heat Transfer Coefficient Nusselt Number Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akino, N.; Kunugi, T.; Ichimiya, K.; Mitsushiro, K.; Ueda, M.: Improved liquid-crystal thermometry excluding human color sensation. J. Heat Transfer, 111, (1989) 558–565.CrossRefGoogle Scholar
  2. 2.
    Akino, N.; Kunugi, T.; Shiina, Y.; Ichimiya, K.; Kurosawa, A: Fundamental study on visualization of temperature fields using thermosensitive liquid-crystals. Flow Visualization V. (ed. R. Reznicek), Washington: Hemisphere (1990) 87–92.Google Scholar
  3. 3.
    Ashforth-Frost, S.; Wang, L. S.; Jambunathan, K.; Graham, D. P.; Rhine, J. M.: Application of image processing to liquid crystal thermography. Procs. Optical Methods and Data Processing in Heat and Fluid Flow, City University, London (1992) 121–126.Google Scholar
  4. 4.
    Bonnett, P.; Jones, T. V.; McDonnell, D. G.: Shear-stress measurement in aerodynamic testing using cholesteric liquid crystals. Liquid Crystal, 6, (1989) 271–280.CrossRefGoogle Scholar
  5. 5.
    Baughn, J. W.; Ireland, P. T.; Jones, T. V.; Saniei, N.: A comparison of the transient and heated-coating methods for the measurements of local heat transfer coefficients on a pin fin. J. Heat Transfer, 111, (1989) 877–881.CrossRefGoogle Scholar
  6. 6.
    Hiller, W. J.; Kowalewski, T. A.: Simultaneous measurement of temperature and velocity fields in thermal convective flows. Flow Visualization IV (ed. C. Veret), Washington: Hemisphere (1986) 617–622.Google Scholar
  7. 7.
    Jones, T. V.; Wang, Z.; Ireland, P. T.: The use of liquid crystals in aerodynamic and heat transfer experiments. Procs. Optical Methods and Data Processing in Heat and Fluid Flow, City University, London, (1992) 51–65.Google Scholar
  8. 8.
    Moffatt, R. J.: Experimental heat transfer. Procs. 9th Intl. Heat Transfer Conf., Jerusalem, Vol. 1, (1991) 308–310.Google Scholar
  9. 9.
    Parsley, M.: The use of thermochromic crystals in heat transfer and flow visualisation. Research. FLUCOME’88, Sheffield University, England, (1988) 216–220.Google Scholar
  10. 10.
    Reinitzer, F.: Beiträge zur Kenntniss des Cholestrins, Monatschr. Chem. Wein, 9, (1888) 50–90.Google Scholar
  11. 11.
    Stasiek, J.; Collins, M. W.; Chew, P. E.: Liquid crystal mapping of local heat transfer in crossed-corrugated geometrical elements for air heat exchangers. EUROTECH DIRECT’ 91 Congress, Birmingham, England, (1991). Paper C413/040.Google Scholar
  12. 12.
    Stasiek, J.; Collins, M. W.: Internal Reports, City University, London, (1989-92).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • J. Stasiek
    • 1
  • M. W. Collins
    • 1
  1. 1.Thermo-Fluids Engineering Research CentreCity UniversityLondonUK

Personalised recommendations